
Lie Groups, Problem Set # 6
Due Thursday, October 18

1) Consider the group G = SO(p, q), obtained from the bilinear form φ on Rp+q

with φ̃ =

(
1p 0
0 −1q

)
, where 1p and 1q are the p × p and q × q identity matrices.

Writing matrices in block form

(
A B
C D

)
, find an explicit description of the Lie

algebra g = so(p, q), and of the subspaces k and p. Show that g′ = k ⊕ ip is a Lie
algebra. Find a group G′ with L(G′) = g′, and show that G′ is isomorphic (actually
conjugate) to SO(p+ q). (It’s not equal to SO(p+ q), since the matrices in G′ aren’t
all real, but it’s conjugate.)

The Lie algebra g is all matrices with AT = −A, DT = −D, and BT = C. In
other words, the upper left and lower right blocks are anti-symmetric and the rest of
the matrix is symmetric. (See part (d) to problem 3.1.13 from last week, and restrict
to real matrices) This means that k is the algebra of matrices with B = C = 0 (in
other words, k = so(p)⊕so(q)) and p is the vector space of matrices with A = D = 0.

To show that G′ is conjugate to SO(n) with n = p + q, we merely show that
g′ = k⊕ ip is conjugate to so(n). Let a be a diagonal matrix whose first p entries are

i and whose last q entries are 1. Then if X =

(
A iB
iC D

)
∈ g′, with BT = C, then

aXa−1 =

(
A −B
C D

)
, which is anti-symmetric and is the general form of an element

of so(n). Since ag′a−1 = so(n), aG′a−1 = SO(n).

2) Next consider the group G = SU(p, q), obtained from the Hermitian form φ on

Cp+q with φ̃ =

(
1p 0
0 −1q

)
. As with Problem 1, find an explicit description of the

Lie algebra su(p, q), of k and of p. Show that k⊕ ip is the Lie algebra of a group G′

that is conjugate to SU(p+ q).

This is almost identical. su(p, q) is the set of complex traceless matrices

(
A B
C D

)
with A∗ = −A, D∗ = −D, and B∗ = C. k is the matrices with B = C = 0 and p is
the matrices with A = D = 0. In this case, k ⊕ ip is the space of all traceless anti-
Hermitian matrices. In other words, g′ = su(n) and G′ = SU(n). (No conjugation
necessary, but you can conjugate by the identity matrix if you really want to.)

3) What’s next? Sp(p, q), of course! (Same questions as problems 1 and 2, only
with a slightly different group.)



As we saw last week, we want quaternionic matrices

(
A B
C D

)
with ĀT = −A,

D̄T = −D and B̄T = +C. For sp(n) we would have had B̄T = −C instead. So k is
the matrices with B = C = 0 and p is the matrices with A = D = 0.

To understand g′, we must remember that a quaternionic matrix M1 + jM2, with

M1 and M2 complex, can be represented as a larger complex matrix

(
M1 −M̄2

M2 −M̄1

)
.

Multiplying this matrix by i yields

(
iM1 −iM̄2

iM2 iM̄2

)
, which is not a quaternionic

matrix. This means that G′ is not a subgroup of SL(n,H), much less a subgroup of

Sp(n). However, multiplying this matrix on the right or left by

(
1 0
0 −1

)
turns it

back into a quaternionic matrix. Any X ∈ g′ can be represented by a complex matrix

of the form


A1 −Ā2 iB1 −iB̄2

A2 Ā1 iB2 iB̄1

iC1 −iC̄2 D1 −D̄2

iC2 iC̄1 D2 D̄1

. Conjugating this by a =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


gives aXa−1 =


A1 −Ā2 iB1 iB̄2

A2 Ā1 iB2 −iB̄1

iC1 −iC̄2 D1 D̄2

−iC2 −iC̄1 −D2 D̄1

, which is a quaternionic matrix with

A′ = A1 + jA2 = A, B′ = iB1 + j(iB2), C
′ = iC1 + j(−iC2) and D′ = D1 + j(−D2).

Note that we have multiplied both components of B by i, while mutiplying one
component of C by i and the other by −i. This converts the relation B̄T = C to
B̄′T = −C ′, which makes aXa−1 an element of sp(n). We have also changed D, but
in a legal way such that D̄′T = −D′.

4) Now consider SO(2n,C) with the bilinear form φ with φ̃ =

(
0 1n

1n 0

)
. Let H

be the set of diagonal matrices in SO(2n,C) and let h be the Lie algebra of H. Show
that h consists of diagonal matrices with entries (λ1, . . . , λn,−λ1, . . . ,−λn), and that
any X ∈ g that commutes with all of h is in h. Find a basis for g. Then decompose
g into eigenspaces of ad(h). (In other words, derive the Dn row in Table 3.6)

The condition for being in the Lie algebra is φ̃X = −XT φ̃, which means that

X =

(
A B
C D

)
with BT = −B, CT = −C, and AT = −D. Put another way, if

j, k ≤ n, then Xj+n,k+n = −Xk,j, Xj+n,k = −Xk+n,j and Xj,k+n = −Xk,j+n. For h,
we need B = C = 0 and A diagonal, so D = −A, which is exactly what we needed
to show.



The 2n entries of a generic element X ∈ h are distinct. Since conjugation must
take eigenspaces to eigenspaces, and since the eigenspaces of X are the coordinate
directions, anything that commutes with X must itself be diagonal, and hence must
be in h.

Given our constraints, the obvious basis is: {Ejk−En+k,n+j, Ej,n+k−Ek,n+j, En+j,k−
En+k,j}, where in the last two classes we want j < k. These are all eigenvectors of
ad(h), with eigenvalues λj − λk, λj + λk, and −λj − λk.

5) Repeat problem 4 for SO(2n + 1,C) with the bilinear form φ with φ̃ = 0 1n 0
1n 0 0
0 0 1

, thereby deriving the Bn row of Table 3.6.

Letting X =

A B E
C D F
G H I

, we have AT = −D, BT = −B and CT = −C as

before. In addition, we have I = 0, ET = −H and F T = −G. In terms of matrix
elements, this means thatXj+n,k+n = −Xk,j, Xj+n,k = −Xk+n,j andXj,k+n = −Xk,j+n

as before, and Xj,2n+1 = −X2n+1,n+j, Xj+n,2n+1 = −X2n+1,j, and X2n+1,2n+1 = 0. The
diagonal subgroup is exactly as before, only with a 0 in the lower right corner. Since
the eigenvalues {±λ1,±λ2, . . . ,±λn, 0} are still generically distinct, the only matrix
that commutes with a generic element of h must be diagonal, hence an element itself
of h.

In addition to the basis elements (and eigenvalues) from problem 4, we also have
Ej,2n+1 − E2n+1,n+j with eigenvalue λj and En+j,2n+1 − E2n+1,j with eigenvalue −λj.

6) And do Cn = Sp(n,C) to round things out.

Now we have matrices

(
A B
C D

)
with AT = −D, BT = B and CT = C. (See

last week’s HW.) In terms of matrix elements, Xjk = −Xn+k,n+j, Xn+j,k = Xn+k,j,
and Xj,n+k = Xk,n+j. A basis for g is Ejk − En+k,n+j with j 6= k, Ej,n+j, En+j,j,
Ej,n+k + Ek,n+j with j < k and En+j,k + En+k,j with j < k. The corresponding
eigenvalues are λj − λk, 2λj, −2λj, λj + λk, and −λj − λk.

The diagonal matrices have D = −A, hence of the same form as for SO(2n,C).
As before, the eigenvalues are generically distinct, so only a diagonal matrix can
commute with all of h.

Book problem 3.2.6: This problem refer to ”G”, which throughout the section
means a complex classical group.



(a) If a is semi-simple, then it has eigenvalues and eigenspaces. We must pick
a basis {ξk} of eigenvectors and then consider the matrix p whose columns are the
elements of our basis and show that this matrix is in G. Then a = pdp−1, where d is
diagonal. If a and p are in G, then so is d, so d is in H.

When G = SL(n,C), there is nothing to show. The eigenvectors are linearly
independent, and we can scale them so that det(p) = 1. In all the other cases, we
must pick a basis such that φ(ξj, ξk) = φ(ej, ek) and such that det(p) = 1. This will
then imply that p ∈ G. We’ll worry about the determinant last – it’s pretty easy. For
now, just concentrate on the eigenvectors.

If a ∈ G, then the eigenvectors of G have an orthogonality property: If λjλk 6= 1,
then φ(ξj, ξk) = 0. This is simply because φ(ξj, ξk) = φ(aξj, aξk) = λjλkφ(ξj, ξk).
If the eigenvalues are ε±11 , ε±12 , . . . , ε±1n and possibly 1, with all of the eigenvalues
distinct, then the eigenvector ξj with eigenvalue εj is orthogonal to everything but
the eigenvector ξn+j with eigenvalue ε−1j . Since φ is non-degenerate, φ(ξj, ξn+j) cannot
be zero, and we can scale one of the vectors so that φ(ξj, ξn+j) = 1. Which is what
we wanted. (For SO(2n+ 1,C), the last eigenvector ξ2n+1 is not orthogonal to itself.
and we can scale it by a complex number so that φ(ξ2n+1, ξ2n+1) = 1.)

Finally, the determinant. For Sp(n,C) this is automatic, since the volume form is
the n-th exterior power of the symplectic form φ. Anything that preserves φ preserves
volume, and hence has determinant 1. For SO(2n) or SO(2n + 1), p preserving φ
means that det(p) = ±1. If det(p) = −1, switch ξ1 and ξn+1. This concludes the
proof when a had distinct eigenvalues.

When a has repeated eigenvalues, we can still apply these arguments. Pick an
arbitrary basis for theε eigenspace. Then pick a dual basis for the ε−1 eigenspace.

(b) This is identical to (a), only with the eigenvalues of X ∈ g coming in ±λ
pairs instead of reciprocal pairs. The orthogonality relations still work, since the
eigenvectors of X are the same as the eigenvectors of eX .

(c) Recall that if matrices X1, . . . , Xk are diagonalizable and commute, then it
is possible to simultaneously diagonalize them. As before, each eigenvector with a
set of eigenvalues is φ-orthogonal to all of the eigenspaces except the one with minus
that set of eigenvalues. In other words, you can choose the basis ξj such that the
eigenvalue of ξn+j for each X ∈ h is minus the eigenvalue for ξj. But then, after the
change of basis, every element of a is in h. [For what it’s worth, I don’t understand
what the hint is driving at.]

(d) If A is connected and Abelian, then A = Γa, where a is an Abelian sub-
algebra. By (c), a is conjugate to a sub-algebra of h, so A = Γ(a) is conjugate to a a
subgroup of H. (I don’t see what the hint has to do with it.)



(e) By (c), an Abelian sub-algebra consisting of semi-simple elements, then a must
take the form ch0c

−1 for some c ∈ G and some sub-algebra h0 of h. But this is a
sub-algebra of chc−1, so if a is maximal, it must equal chc−1.

(f) Let a = L(A). Then a consists of semi-simple elements since a matrix that
diagonalizes etX for t small also diagonalizes X. Now a must be maximal, since if a+ is
an Abelian and semi-simple extension of a, then Γ(a+) is an Abelian and semi-simple
extension of A. By (e), a = chc−1, so A = cHc−1.

(g) For a specific counter-examples, consider SO(3) with the bilinear form. The
4-element group generated by the rotations by π around the three coordinate axes
does not have any vectors that are fixed by the entire group. Since evey element of
H fixes e3, our 4-element group is not conjugate to a subgroup of H,

(h) The simplest example is in SL(2,C). The algebra a generated by

(
0 1
0 0

)
is maximal, since there are no 2-dimensional Abelian subalgebras of sl(2,C). But
there’s no way for a non-diagonalizable matrix to be conjugate to an element of
h! Exponentiating, consider the Abelian group consisting of matrices of the form(

1 x
0 1

)
. It is maximal Abeilian since it is connected and its algebra is maxima

Abelianl. But it contains non-diagonalizable elements, so it can’t be conjugate to a
subgroup of H.

3.2.9 This is in some sense the compact analog of problem 6. Let T be a maximal
torus, and let t be its Lie algebra. Since T is compact, each element of t must be diag-
onalizable with pure imaginary eigenvalues. (Or else exp(tX) would be unbounded).
We have already proven that elements of the compact groups can be diagonalized by
elements of G (the analog of problem 6a). So simultaneously diagonalize the elements
of t to get that h is conjugate to a subgroup of the diagonal subgroup. Since T is
maximal and T = Γ(t), t must be conjugate to the entire diagonal subgroup, so T is
conjugate to a Cartan subgroup.


