Lie Groups, Problem Set # 7
Due Tuesday, October 30

In this problem set we're going to classify the irreducible root systems. It’s a long
list of problems, but you can skip the starred exercises that we already did in class.

Recall from lecture (or p119 of the book) that an abstract root system is a subset
® of a Euclidean space L such that:

1. @ is a finite set that spans L and does not contain 0. (The elements of ¢ are
called roots.)

2. For a € @, the only multiples of o € ® are +a.
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3. For a € ®, the reflection along « (given by the formula g — § —
® to itself.

Q) maps

4. For any two «, 8 € P, 2% is an integer.

1*) Show that the angle between any two roots is either 0, 30, 45, 60, 90, 120,
135, 150 or 180 degrees. Further, show that the two roots have the same length if the
angle is 0, 60, 120 or 180 degrees, that the ratio of their lengths is v/2 if the angle is
45 or 135 degrees, and that the ratio of their lengths is v/3 if the angle is 30 or 150
degrees.

Since 2(a-3)/(a-«) and 2(c- 3) /(B B) are both integers, the product 4 cos?(6) =
4(a- B8)?/[(a- @)(B - B)] is an integer. But cos?(f) < 1, so this product is either 0, 1,
2, 3 or 4. WLOG, assume that |a| > |3|. Then |«|?/|3|? is a ratio of small integers
whose product is 1, 2, 3, or 4.

If the product of integers is 0, then 6 is 90 degrees, and we can’t say anything
about lengths. (Our “ratio” is 0/0.)

If the product of integers is 1, then 6 is 60 or 120 degrees. Furthermore, the ratio
of integers is 1 (since either both integers are 1 or both are —1), so |a| = |5].

If the product is 2, then cos?(f) = 1/2 and 6 is 45 or 135 degrees. The ratio must
be 2 =2/1=(-2)/(-1), so |a| = v2|8].

If the product is 3, then cos?(f) = 3/4, so 0 is 30 or 150 degrees. The ratio is
3=3/1=(-3)/(~1), s0 |a| = V3|5|.

If the product is 4, then cos*(§) = 1, so the two roots are colinear. By axiom
2, this means they are either equal (f# = 0 and |o| = |5]) or negatives (0 = 7 and

ol = [8]).



2) Pick a hyperplane through the origin that does not intersect ®. We call the
roots on one side of this hyperplane positive, and the roots on the other side negative.
A positive root is simple if it cannot be written as the sum of two other positive roots.
Show that the angle between any two simple roots must be at least 90 degrees. [This
was mostly done in class. Finish the proof.]

If 0 is 30, 45 or 60 degrees and || > |3|, we must have 2(a - ) /(- ) = 1. But
then the reflection of § along « is v = 8 — . Since either v or —v is a positive
root, either a« = (—v) + f or § = v+ « is a sum of positive roots and so isn’t simple.
Contradiction. [The pictures of the reflections are slightly different for the three cases,
but the argument is the same.]

3) For the A,, B,, C, and D, root lattices, pick the hyperplane £; + ely + €2(3 +
.-+ e" 1, = 0 for sufficiently small e. Show that the positive roots (with the obvious
overall sign choice) are exactly the same as those listed in the book. What are the
simple roots? [Just list the simple roots — we did the rest in class]

For A,_1, the roots are A\; — )i, the positive roots have j < k, and the simple
roots have k = j + 1.

For B, the roots are \; — g, Aj + Ap, —A; — A, Aj and —A;. The positive roots
are \; — A\, with 7 <k, A\; + A, and A;. The simple roots are \; — \j; and A,.

For (), the roots are A\; — \g, A\j + g, —=A; — A, sA; and —sA;. The positive roots
are \; — A\, with 7 <k, A\; + A, and 2);. The simple roots are \; — A\;j;1 and 2\,,.

For D,,, the roots are A\j — Ak, Aj+ A, and —A; — A The positive roots are A\; — Ay
with j < k and A\; + A,. The simple roots are A\; — Aj 11 and A1 + Aj.

We draw a graph, called a Dynkin diagram, to describe the geometry of the
simple roots. Draw one dot for each simple root. Draw single, double, or triple lines
connecting two simple roots if the angle between them is 120, 135 or 150 degrees.
(Don’t draw a line for a 90 degree angle). For the double and triple lines, draw an
arrow on the line pointing from the longer root towards the shorter root.

Notation: we call a vertex that is connected to more than two other vertices a
branch point.

In a root system ® = ®; & &, is a direct sum of two lower-dimensional root
systems, then the simple roots of ® will be the union of the simple roots of ®; and
the simple roots of ®5. This will lead to a disconnected Dynkin diagram. If the root
system is irreducible, meaning that it isn’t a direct sum, then the resulting Dynkin
diagram is connected.



4*) From your results in (3), draw the Dynkin diagrams for A,,, B,, C, and D,,.
Note that By and C,, are given by the same diagram, and that Ds; has the same
diagram as As. In fact, the Lie algebras are isomorphic. For this reason we usually
only consider B,, for n > 1, C,, for n > 2 and D,, for n > 3.

(I don’t know how to generate nice pictures in TeX, so I'll use the following
conventions. — is a single line, => is a double line, and => — is a triple line.)

The diagram for A, is a1 —ay — -+ — ay,_1.

The diagram for B,, is a; —ag — - -+ — i1 => @y, since \,_1 — A, is bigger than
An-

The diagram for C,, is o, => ,,_1 — - - - — iq, since 2),, is bigger than A\, — \,,_1.

The diagram for D,, has a chain a; — -+ — ay,_9, With a,,_9 = A\,_2 — \,,_1 then

connected to both «,_; = \,—1 — A\, and a,, = \,—1 + \,,. Note that «,,_; and «,, are
orthogonal.

The classification of irreducible root systems proceeds by showing that various
sub-diagrams can’t occur.

5*) Show that if o and [ are connected by a triple line, then o and /3 are not
connected to any other vertices. In other words, the only connected Dynkin diagram
with a triple line has only two vertices. This corresponds to the rank-2 group Gs.
[Hint: I see two ways to do this, and they’re in some sense equivalent. One is to show
that there aren’t any directions that make at least a 120 degree angle with a and at
least a 90 degree angle with 5. The other is to assume that there is a root v with
this property and find a linear combination of «, § and v whose squared length is
non-positive, which is of course a contradiction.|

If we had o« => —f — 7, then (a« 4+ 26 +7) - (o + 25 +7) <0, with equality iff «
and 7 are orthogonal. If we had @« => —f = or @« => —f3 = —7, then after scaling
v to have the same size as  the squared norm would be negative.

We rule out a— <= f — v, etc similarly by looking at the squared norm of
3o+ 26+ 7.

6*) Show that a connected diagram can have at most one double line. [Hint:
assume that you have two double lines and find a linear combination of the roots
with negative squared length.]

If we have oy <= g — -+- — 1 => @, and |oy| = 1, then (D ay) - O ay) =
1+24+2+--+241-2—-2—-2—---—2 =0 (or less than 0 if there are any
additional cross-terms). If either of the double lines point in instead of out, replace



oy or ap with ay/2 or «,/2 in the sum.
7) Show that a diagram containing a double line cannot have a branch point.

If we have a; <= ag — -+ — ay,_9, With «,_» connected to a,_1 and «,,, then
ag+- a9+ (o, _1+a,)/2 has squared norm 1424 - '+2+%+%—2—2—~ —2=0
(or less if a line is double or if there are cross-terms).

If the double line points the other way, replace o with oy /2.
8*) Show that a diagram with no double lines cannot have any loops.

If there is a closed loop a3 — as — - -+ — ay,, with «a,, then connected back to aq,
then (3°; ;) - (32; ;) = 0 if there are no additional lines. (Imagine a; = A\j — Aj41
and o, = A\, — A1.)

9*) Show that a diagram with a double line cannot have any loops.

If we had a loop containing a double line, then the roots on opposite sides of the
double line would have to have the same length, since they’re connected by single
lines, which contradicts the properties of double lines.

10) Show that, with one exception, you can’t have a diagram with a double line
that extends in both directions. Specifically, you can’t have « connected to 3,
connected to v with a double line (pointing either way), v connected to 4, and ¢
connected to e. (If you eliminate the e then the resulting graph with 4 vertices is
possible, and corresponds to the group Fj.)

We are trying to rule out « — f=>~v—0 —e. Let r =a+ 26+ 37+ 20 + ¢, and
suppose that |e] = 1. Thenr-r=2+84+94+4+1—-4—-12—6—2 = 0. To rule out
a—f<=v—0—c¢ look at 2a + 45 + 3y + 20 + le instead.

11) Draw all the possible diagrams that involve a double or triple line.

The only diagram with a triple line is a => —f, which corresponds to the excep-
tional algebra (and group) Gs.

The diagrams with a double line are oy — g => a3 — ay, corresponding to Fj,
plus the already-listed diagrams for B,, and C,,. (By problem 10, a double line either
extends 1 in both directions, or 0 in one direction and an arbitrary distance in the
other. Extending by 0 in both directions is By = C5.)

We now consider the diagrams where all of the lines are single. These are called
the “simply laced” diagrams. The remaining questions are all about simply laced
diagrams.

12) Show that any simply laced diagram has at most three ends. In particular,
there can be at most one branch point, and it can only be a 3-way intersection.



Suppose you have two or more branches. Then there exists a sub-diagram con-
sisting of a chain ay — a3 — -+ — a2 — a,_1,with a; connected to ag (not to as)
and «,, connected to a,_» (not to a,_1). The case n = 5 is a single branch point
with 4 (or more) legs. All roots have the same length, which we take to be 1. Let
r= a1+a2+22?;§aj+an_1+an. Thenr---r=1+1+44+4+ - +4+14+1—-2—

2—4—4—4—---—4—2—2=0. This can be realized explicitly with a; = A; — Ag,
ay = =X — Ao, o = \j— ANjp1, Q1 = A1 — Ay and o, = A1 + A, You can check
that » = 0.

What remains is to limit the size of the ends.

13) Show that at least one of the branches coming from a branch point has length

Suppose that we have a branch point o connected to three branches of length at
least 2, with (; 2,3 connected to a and -y; connected to ;. Let r = 3a+23" 5+ > ;.
Thenr-r=9+4+4+4+1+1+1-3(6)—3(2) =0.

14) Show that you cannot have two of the three branches having length 3 or more.

Suppose we had a chain a; — --- — a7 with a4 also connected to 3. Let r =
a1 + 2a + 3as + day + 3as + 206 +ar +26. Thenr-r=14+44+9+164+9+4+
1+4-2—-6-12—-12—-6—-2—-8=0.

15) Show that if there is a branch point and two of the branches have length 1
and 2, then the third branch has length at most 4.

Let’s introduce some terminology. The FE, ., diagram is a chain oy —- - - — av,, with
[ connected to a3. We need to show that Eq is impossible. Let r = 2aq +4as + 6ai3 +
Say + 4das + 3ag + 207 +ag +36. Thenr-r=4+4+16+36+254+16+9+2+ 1+
9—-8—-24—-30—20—-12—-6—2—-18=0.

16) Write down all of the simply laced Dynkin diagrams.

These are A,,, D,,, Fs, E7 and Eg. For the FE, series we can’t have n > 9, and Fjs
is just Ds.

Where did I get those crazy linear combinations?!

It’s not black magic. In each case we're trying to find a linear combination r =
> cja; whose square is zero, leading to a contradiction. For simply laced diagrams,
rer = Zj c? — Zedges c¢;jc,. Minimizing with respect to ¢; means that ¢; must equal
half the sum of the coefficients of vertices that touch ;. This completely determines
r (up to scale). Pick the coefficient of an endpoint, and the rest follow, one by one.



In particular, the coefficients along chains must form an arithmetic progression; if
the endpoint has coefficient z, then the next point has coefficient 2z, the next has
coefficient 3z, etc.

The diagrams with double and triple lines are only slightly more complicated. In
general, the value of ¢; that minimizes r - r is —% Zﬁ cﬁ%. If o is the longer root
of a double or triple line, 2a; - B/ - B = —1, just as with a single line. If «; is the
shorter root of a double or triple line, then we multiply cs by 2 or 3 in its contribution
to ¢;.

Combining problem 16 with problem 11 gives a complete classification of possible
Dynkin diagrams. The ones that aren’t A, or D,, are called Eg, F7 and Eg, with the
subscript indicating how many dots are in the diagram (aka the rank of the group).

The only thing that’s missing is the actual Lie theory! The relevant theorems are:

Theorem 1 Let G be a simple Lie group, let H be a maximal Abelian subgroup
consisting of semi-simple elements, and let ® be the resulting root system. Then the
Dynkin diagram for G is connected and does not depend on the choice of H (since
all Cartan subgroups are conjugate) and does not depend on the hyperplane used to
define positivity.

Theorem 2 The same thing goes for simple Lie algebras.

Theorem 3 Two simple Lie algebras are isomorphic if and only if they generate the
same Dynkin diagram.

Theorem 4 All simple Lie algebras are of the form A,, B,, C,, D, Eg, Er7, Es, F}
or Go. All semi-simple Lie algebras are direct sums of simple Lie algebras. All simply
connected semi-simple Lie groups are obtained by exponentiation from semi-simple
Lie algebras.



