1) Explain in your own words what is meant by the equation $\lim _{x \rightarrow 2} f(x)=4$. Is it possible for this statement to be true and still have $f(2)=5$? Either explain why this can't happen, or sketch the graph of a function where it does happen.
2) Explain what it means to say that $\lim _{x \rightarrow 1^{-}} f(x)=3$, and what it means to say that $\lim _{x \rightarrow 1^{+}} f(x)=6$. Sketch the graph of a function where both of these are ture. If both of these are true, is it possible for $\lim _{x \rightarrow 1} f(x)$ to exist? Why or why not?
3) Explain what each of these mean, and sketch a graph to go with your explanation. (a) $\lim _{x \rightarrow 2} f(x)=\infty$. (b) $\lim _{x \rightarrow 3^{+}} g(x)=-\infty$.
4) With a calculator, investigate numerically the limit $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$. That is, plug in a bunch of values of x close to zero and see what they tend to. Remember that angles are always measured in radians when we do calculus. (You should turn in a table of values that you plugged in to justify what you claim is the limit.)
5) Now do the same for $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}$.
6) Use the limit laws to evaluate the following limits (if they exist):
(a) $\lim _{x \rightarrow 2} \frac{\sqrt{4 x+1}-3}{x-2}$
(b) $\lim _{a \rightarrow 0} \frac{(3+a)^{-1}-3^{-1}}{a}$
(c) $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-3^{2}}{h}$
7) Compute $\lim _{x \rightarrow 0}|x| \sin (1 / x)$, if it exists.
