1) For the following, find the limits $\lim _{x \rightarrow a^{+}} f(x), \lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a} f(x)$, if they exist.
a) $a=4$ and $f(x)=\frac{|x-4|}{x-4}$.
b) $a=2$ and $f(x)=\frac{|x-2|}{x}$.
2) Sketch the graph of a continuous function f with all of the following properties:
a) $f(0)=2$
b) $f(x)$ is decreasing for $0<x<3$
c) $f(x)$ is increasing for $3<x \leq 5$
d) $f(x)$ is decreasing for $x>5$.
e) $f(x) \rightarrow 9$ as $x \rightarrow \infty$.
3) How can you remove the discontinuity of f at $x=2$, where

$$
f(x)=\frac{x^{3}-4 x^{2}-11 x+30}{x^{2}-4} .
$$

In other words, find a function $g(x)$ that is continuous at $x=2$ and that equals $f(x)$ everywhere except at $x=2$.
4) For the following two functions, show that there is a number c between 0 and 1 such that $f(c)=0$.
a) $f(x)=e^{x}-3 x$
b) $f(x)=2^{x}-\frac{1}{x}$.
5) Let $f(x)=x^{3}-3 x^{2}-4 x+12$, and let $h(x)=\left\{\begin{array}{ll}\frac{f(x)}{x-3} & x \neq 3 \\ p & x=3\end{array}\right.$, where p is an appropriately chosen constant.
a) Find all the zeroes of f.
b) Find the value of p that makes g continuous at $x=3$. Explain.

