Functions, Exponentials, Trigonometry

1. Use the laws of exponents to simplify completely.
(a) $\frac{x^{2 n} \cdot x^{3 n-1}}{x^{n+2}}$
(b) $\frac{\sqrt{a \sqrt{b}}}{\sqrt[3]{a b}}$
2. Sketch the graph without a calculator. Make sure you label key attributes of the function. If the asymptote is NOT the x - or y-axis, you should have a dotted line for the asymptote.
(a) $y=10^{x}$
(b) $y=1-e^{-x}$
(c) $y=1-2 \cos x$
(d) $y=\frac{x+1}{x^{2}-2 x-3}$
3. Find the domain.
(a) $f(x)=\frac{1-e^{x^{2}}}{1-e^{1-x^{2}}}$
(b) $g(x)=\frac{1+x}{e^{\cos x}}$
(c) $h(x)=\sqrt{1-2^{x}}$
4. For the following functions, find $f \circ g$ and $g \circ f$ and find maximal domains for the new functions.
(a) $f(x)=\sqrt{x} ; g(x)=\sqrt[3]{1-x}$
(b) $f(x)=x+\frac{1}{x} ; g(x)=\frac{x+1}{x+2}$
(c) $f(x)=\frac{x}{1-x} ; g(x)=\sin 2 x$
5. Find the exact value for the following expressions.
(a) $\log _{3}\left(\frac{1}{27}\right)$
(b) $\log _{2}(6)-\log _{2}(15)+\log _{2}(20)$
(c) $e^{-2 \ln 5}$
6. Solve for x. Do not round to decimals, but give answers in simplest form.
(a) $e^{2 x}-3 e^{x}+2=0$
(b) $\ln x+\ln (x+1)=1$
(c) $\ln (\ln x))=1$
7. If $\sin \theta=\frac{11}{61}$ and $\cos \theta>0$, find the values of the five remaining trigonometric functions.
8. Find the exact value of $\cos (\arctan (2))$ without using a calculator.
9. Evaluate the following expressions:
(a) $\arccos \left(\frac{\sqrt{3}}{2}\right)$
(b) $\arcsin \left(\frac{-1}{2}\right)$
(c) $\arctan (-1)$
