
M346 Third Midterm Exam Solutions, November 19, 2013

1) Consider the system of differential equations:

dx1
dt

= x1(4− x1 − 3x2)

dx2
dt

= x2(1 + x1 − 2x2)

[These come from a predator-prey system, with x1 counting the prey and x2
counting the predators.]

a) Find the fixed points. (There are four of them.)

Setting dx1/dt = 0 implies that x1 = 0 or 4 − x1 − 3x2 = 0. Setting
dx2/dt = 0 implies that x2 = 0 or 1 +x1−2x2 = 0. This gives 4 possibilities,
depending on which ”or” we pick from each equation, leading to the fixed

points

(
0
0

)
,

(
0

1/2

)
,

(
4
0

)
, and

(
1
1

)
.

b) For each fixed point, write down a system of linear differential equations
that approximate the system near the fixed point.

We compute the matrix

A =

(
∂f1/∂x1 ∂f1/∂x2
∂f2/∂x1 ∂f2/∂x2

)
=

(
4− 2x1 − 3x2 −3x1

x2 1 + x1 − 4x2

)
of partial derivatives. Evaluating this matrix at the four fixed points gives
our linearized systems:

i) Near

(
0
0

)
, y = x and dy

dt
≈
(

4 0
0 1

)
y.

ii) Near

(
0

1/2

)
, y = x−

(
0

1/2

)
and dy

dt
≈
(

5/2 0
1/2 −1

)
y.

iii) Near

(
4
0

)
, y = x−

(
4
0

)
and dy

dt
≈
(
−4 −12
0 5

)
y.

iv) Near

(
1
1

)
, y = x−

(
1
1

)
and dy

dt
≈
(
−1 −3
1 −2

)
y.



c) For each fixed point, indicate how many stable, neutral and unstable
modes there are, and whether the fixed point as a whole is stable, neutral or
unstable.

We look at the eigenvalues of the matrix in each case:

i) 4 and 1 are positive, so both modes (and the system) are unstable.

ii) 5/2 is positive and -1 is negative, so there is one unstable mode and
one stable mode. The system as a whole is unstable.

iii) 5 is positive and -4 is negative, so there is one unstable mode and one
stable mode. The system as a whole is unstable.

iv) (−3± i
√

11)/2 both have negative real parts, so both modes (and the
system) is stable. Over time, x will spiral into the fixed point (1, 1)T .

2. a) Let V be the subspace of R5 spanned by




1
1
1
1
1

 ,


1
2
3
4
5

 ,


1
4
9
16
25


. Find

an orthogonal basis for V . (We are using the standard inner product.)

This is Gram-Schmidt on R5. Our basis is {y1,y2,y3}, where

y1 = x1 = (1, 1, 1, 1, 1)T .

y2 = x2− 〈y1|x2〉
〈y1|y1〉y1 = (1, 2, 3, 4, 5)T −3(1, 1, 1, 1, 1)T = (−2,−1, 0, 1, , 2)T .

y3 = x3 −
〈y1|x3〉
〈y1|y1〉

y1 −
〈y2|x3〉
〈y2|y2〉

y2

= (1, 4, 9, 16, 25)T − 11(1, 1, 1, 1, 1)T − 6(−2,−1, 0, 1, , 2)T

= (2,−1,−2,−1, 2)T .

b) Within L2([0, π]), with inner product 〈f |g〉 =
∫ π
0
f(t)g(t)dt, let W be the

span of sin(t) and sin2(t). Find an orthogonal basis for W . You may use
the following facts without explanation:

∫ π
0

sinn(t)dt equals π if n = 0, 2 if
n = 1, π/2 if n = 2 and 4/3 if n = 3.

Our basis is {y1,y2} where y1 = x1 = sin(t) and

y2 = x2 −
〈y1|x2〉
〈y1|y1〉

y1

= sin2(t)− 4/3

π/2
sin(t) = sin2(t)− 8

3π
sin(t).



3. a) Find the best fit (least squares) line y = c0 + c1x through the points
(−2,−2), (−1, 2), (0, 2), (1, 4), and (2, 14).

A =


1 −2
1 −2
1 0
1 1
1 2

 and b =


−2
2
2
4
14

, so

ATA =

(
5 0
0 10

)
; ATb =

(
20
34

)
,

so c0 = 4 c1 = 3.4. Our best fit line is y = 3.4x+ 4.

b) Find the best fit parabola y = c0 + c1t + c2t
2 through the same points.

(Note: Don’t be surprised if you get different values of c0 and c1 than in part
(a)).

Now A =


1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

, so

ATA =

 5 0 10
0 10 0
10 0 34

 ; ATb =

20
34
54

 ,

Solving ATAc = ATb (say, by row reduction) gives c0 = 2, c1 = 3.4 and
c2 = 1, so our best fit parabola is y = 2 + 3.4x+ x2.

4. Consider the Hermitian matrix H =

(
4 4i
−4i −2

)
a) Find the eigenvalues and eigenvectors of H.

The eigenvalues are 6 and −4, with eigenvectors

(
2i
1

)
and

(
1
2i

)
, respec-

tively.

b) Construct an orthonormal basis of C2 consisting of eigenvectors of H.

Since our eigenvectors are already orthogonal, we just have to normalize

them: Our basis is

{
1√
5

(
2i
1

)
, 1√

5

(
1
2i

)}
.



c) Construct (explicitly!) another matrix T with eigenvalues i and −i, whose
eigenvectors are the same as those of H. What sort of matrix is T? What
can you say about the columns of T?

T = PDP−1 = ±1
5

(
−3i 4
−4 3i

)
, where the ± depends on which eigenvector

of H you chose to have eigenvalue i and which to have eigenvalue −i. This
calculation is made easier by the fact that P is a unitary matrix, so P−1 = P †.
Since the eigenvalues of T are on the unit circle and the eigenvectors are
orthogonal, T must be unitary, and you can check that the columns are
orthonormal.


