M346 Third Midterm Exam Solutions, November 19, 2013

1) Consider the system of differential equations:

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=x_{1}\left(4-x_{1}-3 x_{2}\right) \\
& \frac{d x_{2}}{d t}=x_{2}\left(1+x_{1}-2 x_{2}\right)
\end{aligned}
$$

[These come from a predator-prey system, with x_{1} counting the prey and x_{2} counting the predators.]
a) Find the fixed points. (There are four of them.)

Setting $d x_{1} / d t=0$ implies that $x_{1}=0$ or $4-x_{1}-3 x_{2}=0$. Setting $d x_{2} / d t=0$ implies that $x_{2}=0$ or $1+x_{1}-2 x_{2}=0$. This gives 4 possibilities, depending on which "or" we pick from each equation, leading to the fixed points $\binom{0}{0},\binom{0}{1 / 2},\binom{4}{0}$, and $\binom{1}{1}$.
b) For each fixed point, write down a system of linear differential equations that approximate the system near the fixed point.

We compute the matrix

$$
A=\left(\begin{array}{ll}
\partial f_{1} / \partial x_{1} & \partial f_{1} / \partial x_{2} \\
\partial f_{2} / \partial x_{1} & \partial f_{2} / \partial x_{2}
\end{array}\right)=\left(\begin{array}{cc}
4-2 x_{1}-3 x_{2} & -3 x_{1} \\
x_{2} & 1+x_{1}-4 x_{2}
\end{array}\right)
$$

of partial derivatives. Evaluating this matrix at the four fixed points gives our linearized systems:
i) Near $\binom{0}{0}, \mathbf{y}=\mathbf{x}$ and $\frac{d \mathbf{y}}{d t} \approx\left(\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right) \mathbf{y}$.
ii) Near $\binom{0}{1 / 2}, \mathbf{y}=\mathbf{x}-\binom{0}{1 / 2}$ and $\frac{d \mathbf{y}}{d t} \approx\left(\begin{array}{cc}5 / 2 & 0 \\ 1 / 2 & -1\end{array}\right) \mathbf{y}$.
iii) Near $\binom{4}{0}, \mathbf{y}=\mathbf{x}-\binom{4}{0}$ and $\frac{d \mathbf{y}}{d t} \approx\left(\begin{array}{cc}-4 & -12 \\ 0 & 5\end{array}\right) \mathbf{y}$.
iv) Near $\binom{1}{1}, \mathbf{y}=\mathbf{x}-\binom{1}{1}$ and $\frac{d \mathbf{y}}{d t} \approx\left(\begin{array}{cc}-1 & -3 \\ 1 & -2\end{array}\right) \mathbf{y}$.
c) For each fixed point, indicate how many stable, neutral and unstable modes there are, and whether the fixed point as a whole is stable, neutral or unstable.

We look at the eigenvalues of the matrix in each case:
i) 4 and 1 are positive, so both modes (and the system) are unstable.
ii) $5 / 2$ is positive and -1 is negative, so there is one unstable mode and one stable mode. The system as a whole is unstable.
iii) 5 is positive and -4 is negative, so there is one unstable mode and one stable mode. The system as a whole is unstable.
iv) $(-3 \pm i \sqrt{11}) / 2$ both have negative real parts, so both modes (and the system) is stable. Over time, \mathbf{x} will spiral into the fixed point $(1,1)^{T}$.
2. a) Let V be the subspace of \mathbb{R}^{5} spanned by $\left\{\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right),\left(\begin{array}{c}1 \\ 4 \\ 9 \\ 16 \\ 25\end{array}\right)\right\}$. Find an orthogonal basis for V. (We are using the standard inner product.)

This is Gram-Schmidt on \mathbb{R}^{5}. Our basis is $\left\{\mathbf{y}_{\mathbf{1}}, \mathbf{y}_{\mathbf{2}}, \mathbf{y}_{\mathbf{3}}\right\}$, where

$$
\begin{aligned}
& \mathbf{y}_{\mathbf{1}}=\mathbf{x}_{\mathbf{1}}=(1,1,1,1,1)^{T} . \\
& \mathbf{y}_{\mathbf{2}}=\mathbf{x}_{\mathbf{2}}-\frac{\left\langle\mathbf{y}_{\mathbf{1}} \mid \mathbf{x}_{\mathbf{2}}\right\rangle}{\left\langle\mathbf{y}_{\mathbf{1}} \mid \mathbf{y}_{\mathbf{1}}\right\rangle} \mathbf{y}_{\mathbf{1}}=(1,2,3,4,5)^{T}-3(1,1,1,1,1)^{T}=(-2,-1,0,1,, 2)^{T} . \\
& \mathbf{y}_{\mathbf{3}}=\mathbf{x}_{\mathbf{3}}-\frac{\left\langle\mathbf{y}_{\mathbf{1}} \mid \mathbf{x}_{\mathbf{3}}\right\rangle}{\left\langle\mathbf{y}_{\mathbf{1}} \mid \mathbf{y}_{\mathbf{1}}\right\rangle} \mathbf{y}_{\mathbf{1}}-\frac{\left\langle\mathbf{y}_{\mathbf{2}} \mid \mathbf{x}_{\mathbf{3}}\right\rangle}{\left\langle\mathbf{y}_{\mathbf{2}} \mid \mathbf{y}_{\mathbf{2}}\right\rangle} \mathbf{y}_{\mathbf{2}} \\
&=(1,4,9,16,25)^{T}-11(1,1,1,1,1)^{T}-6(-2,-1,0,1,, 2)^{T} \\
&=(2,-1,-2,-1,2)^{T} .
\end{aligned}
$$

b) Within $L^{2}([0, \pi])$, with inner product $\langle f \mid g\rangle=\int_{0}^{\pi} \overline{f(t)} g(t) d t$, let W be the span of $\sin (t)$ and $\sin ^{2}(t)$. Find an orthogonal basis for W. You may use the following facts without explanation: $\int_{0}^{\pi} \sin ^{n}(t) d t$ equals π if $n=0,2$ if $n=1, \pi / 2$ if $n=2$ and $4 / 3$ if $n=3$.

Our basis is $\left\{\mathbf{y}_{\mathbf{1}}, \mathbf{y}_{\mathbf{2}}\right\}$ where $\mathbf{y}_{\mathbf{1}}=\mathbf{x}_{\mathbf{1}}=\sin (t)$ and

$$
\begin{aligned}
\mathbf{y}_{\mathbf{2}} & =\mathbf{x}_{\mathbf{2}}-\frac{\left\langle\mathbf{y}_{\mathbf{1}} \mid \mathbf{x}_{\mathbf{2}}\right\rangle}{\left\langle\mathbf{y}_{\mathbf{1}} \mid \mathbf{y}_{\mathbf{1}}\right\rangle} \mathbf{y}_{\mathbf{1}} \\
& =\sin ^{2}(t)-\frac{4 / 3}{\pi / 2} \sin (t)=\sin ^{2}(t)-\frac{8}{3 \pi} \sin (t) .
\end{aligned}
$$

3. a) Find the best fit (least squares) line $y=c_{0}+c_{1} x$ through the points $(-2,-2),(-1,2),(0,2),(1,4)$, and $(2,14)$.

$$
\begin{aligned}
A=\left(\begin{array}{cc}
1 & -2 \\
1 & -2 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right) \text { and } \mathbf{b} & =\left(\begin{array}{c}
-2 \\
2 \\
2 \\
4 \\
14
\end{array}\right), \text { so } \\
A^{T} A & =\left(\begin{array}{cc}
5 & 0 \\
0 & 10
\end{array}\right) ; \quad A^{T} \mathbf{b}=\binom{20}{34},
\end{aligned}
$$

so $c_{0}=4 c_{1}=3.4$. Our best fit line is $y=3.4 x+4$.
b) Find the best fit parabola $y=c_{0}+c_{1} t+c_{2} t^{2}$ through the same points. (Note: Don't be surprised if you get different values of c_{0} and c_{1} than in part (a)).

Now $A=\left(\begin{array}{ccc}1 & -2 & 4 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4\end{array}\right)$, so

$$
A^{T} A=\left(\begin{array}{ccc}
5 & 0 & 10 \\
0 & 10 & 0 \\
10 & 0 & 34
\end{array}\right) ; \quad A^{T} \mathbf{b}=\left(\begin{array}{c}
20 \\
34 \\
54
\end{array}\right)
$$

Solving $A^{T} A \mathbf{c}=A^{T} \mathbf{b}$ (say, by row reduction) gives $c_{0}=2, c_{1}=3.4$ and $c_{2}=1$, so our best fit parabola is $y=2+3.4 x+x^{2}$.
4. Consider the Hermitian matrix $H=\left(\begin{array}{cc}4 & 4 i \\ -4 i & -2\end{array}\right)$
a) Find the eigenvalues and eigenvectors of H.

The eigenvalues are 6 and -4 , with eigenvectors $\binom{2 i}{1}$ and $\binom{1}{2 i}$, respectively.
b) Construct an orthonormal basis of \mathbb{C}^{2} consisting of eigenvectors of H.

Since our eigenvectors are already orthogonal, we just have to normalize them: Our basis is $\left\{\frac{1}{\sqrt{5}}\binom{2 i}{1}, \frac{1}{\sqrt{5}}\binom{1}{2 i}\right\}$.
c) Construct (explicitly!) another matrix T with eigenvalues i and $-i$, whose eigenvectors are the same as those of H. What sort of matrix is T ? What can you say about the columns of T ?
$T=P D P^{-1}=\frac{ \pm 1}{5}\left(\begin{array}{cc}-3 i & 4 \\ -4 & 3 i\end{array}\right)$, where the \pm depends on which eigenvector of H you chose to have eigenvalue i and which to have eigenvalue $-i$. This calculation is made easier by the fact that P is a unitary matrix, so $P^{-1}=P^{\dagger}$. Since the eigenvalues of T are on the unit circle and the eigenvectors are orthogonal, T must be unitary, and you can check that the columns are orthonormal.

