
Lie Groups Solutions, Problem Set # 10

Section 6.1:

4a: Showing that C is well-defined just means showing that C((x1 + x2) ⊗ y) =
C(x1 ⊗ y) + C(x2 ⊗ y), that C(x ⊗ (y1 + y2)) = C(x ⊗ y1) + C(x ⊗ y2) and that
C(cx ⊗ y) = C(x ⊗ cy) = cC(x ⊗ y), where c is a scalar the x’s are elements of V ∗

and the y’s are elements of W . Linearity in x comes from the fact that evaluation at
z is a linear map V ∗ → R. Linearity in y is obvious (since we’re just multiplying by
the number x(z). And the way that scalars behave is the linearity of products.

For injectivity, we need the fact that an arbitrary element of V ∗ ⊗W is a finite
sum

∑
i xi⊗yi, where the xi’a are linearly independent, and where the yi’s are linearly

independent. (If you have a sum with x’s linearly dependent, then you can write one
of the x’s as a linear combination of the others, expand terms, and get a sum with
one fewer term. Repeat this process until you have a minimal sum. Likewise for the
y’s) But then there exists a z for which x1(z) 6= 0 but xi(z) = 0 for i > 1. Then
C(
∑
xi ⊗ yi)(z) =

∑
xi(z)yi = x1(z)y1 6= 0, implying that C(

∑
(xi ⊗ yi) is not the

zero map.

For surjectivity, we need the additional assumption that V is finite-dimensional.
(Not a big deal, since the book only defines tensor products for finite-dimensional
spaces.) Let ei, . . . , en be a basis for V , with dual basis φ1, . . . , φn, so that every
vector can be expanded as z =

∑
(φi(z))ei. Let L : V → W be a linear map. Then

I claim that L = C(
∑

i φi ⊗ (L(ei))), since C(
∑

i φi ⊗ L(ei))z =
∑

i φi(z)L(ei) =
L(
∑

i φi(z)ei) = L(z). If V is not finite-dimensional, then the identity map V → V
cannot be written as a (finite) sum of rank-1 maps C(x⊗ y).

This whole construction is best visualized when V = Rn and W = Rm, in which
case x ∈ V ∗ is a row vector and y is column vector and C(x⊗ y) is the matrix (outer
product) yx.

(b) By definition, π̌ ⊗ ρ(a)(x ⊗ y) = (x ◦ π(a−1) ⊗ ρ(a)y), so π̌ ⊗ ρ(a)(L) =
ρ(a) ◦ L ◦ π(a−1). In other words, we act by π on the left and ρ on the right.

5: This is similar to problem 4. In fact, showing linearity in x is identical to 4a,
showing linearity in y is identical to showing linearity in x, and the properties of
scalar multiplication is obvious. For injectivity, we use the same trick as before. An
arbitrary element of V ∗ ⊗W ∗ can be written as a finite sum

∑
xi ⊗ yi with all the

x”s linearly independent and all the y”s linearly independent. Pick u as we picked z
before, so that x1(u) 6= 0 but xi(u) = 0 for i > 1. Pick v such that y1(v) 6= 0. Then
B(
∑

i xi ⊗ y1)(u, v) = x1(u)y1(v) 6= 0. For surjectivity, let e1, . . . , en be a basis for
V and let f1, . . . , fm be a basis for W , and let {φi} and {ψj} be the dual bases. Let
L be a bilinear map, and let Lij = L(ei, fj). Then L(u, v) =

∑
i,j φi(u)ψj(v)Lij =



B(
∑

i,j Lijφi ⊗ ψj)(u, v), so L is in the image of B.

(b) The representation should be π̌ ⊗ ρ̌, not π̌ ⊗ ρ. Define:

(π̌ ⊗ ρ̌)(a)L(u, v) = L(π(a−1u, ρ(a−1)v)

That is, we act by both π and ρ on the right.

The upshot of problems 4 and 5 is that:

π ⊗ ρ acts on V ⊗W by (π ⊗ ρ(a))(v ⊗ w) = π(a)v ⊗ ρ(a)w

π̌ ⊗ ρ acts on L(V,W ) = V ∗ ⊗W by (π ⊗ ρ(a))L = ρ(a) ◦ L ◦ π(a−1)

π̌⊗ ρ̌ acts on Bil(V,W ) = V ∗⊗W ∗ on the right with respect to both arguments.

Every time you see a V or a W , you act by π(a) or ρ(a) on the left, and every
time you see a V ∗ or W ∗ you act by π(a−1) or ρ(a−1) on the right.

6: The formula for how s acts is badly typeset. It should read

s(x1 ⊗ · · · ⊗ xm) = xs−1(1) ⊗ · · · ⊗ xs−1(m)

(a) Then sax = (ax)s−1(1) ⊗ · · · ⊗ (ax)s−1(m) = a(xs−1(1))⊗ · · · ⊗ a(xs−1(m)) = asx.
If a ∈ GL(n,C), then a commutes with s, so a commutes with c =

∑
s γss. Since

acx = cax ∈ cTm(Cn), the space cTm(Cn) is GL(n,C)-invariant.

(b) Again there’s a typo, with the correct formula reading

(x1 ⊗ · · · xm, y1 ⊗ · · · ⊗ ym) = (x1, y1) · · · (xm, ym)

This is linear in x (since each inner product is linear in xi), is linear in y (ditto), is
symmetric. Positivity is slightly trickier. If x = (x1 ⊗ · · ·xm) then it’s obvious that
(x, x) ≥ 0. However, a general element of TM(Cn) is NOT a product x1 ⊗ · · · ⊗ xm.
It’s a linear combination of such terms. If x =

∑
i(x

i
1 ⊗ · · · ⊗ xim), then it’s not

so obvious that (x, x) ≥ 0. Still, it’s true. To see this, consider products of the
form ei1 ⊗ · · · ⊗ eim , where each eij is a standard basis vector. These products are
orthonormal, so the inner product is positive on the span of these products. But
that’s all of Tm(Cn), since

x1 ⊗ · · · ⊗ xn =
∑

xi11 x
i2
2 · · ·ximm ei1 ⊗ · · · ⊗ eim ,

where we have expanded each vector xk as
∑

ik
xikk eik .

Now, for x and y being simple products, (ax, y) =
∏

(axi, yi) =
∏

(xi, a
∗yi) =

(x, a∗y). This extends by linearity to all of Tm(Cn), not just the simple products.



In particular, if a is unitary then (ax, ay) = (x, y), so U(n) acts by unitary trans-
formations of Tm(Cn). Now suppose that V is a linear subspace of Tm(Cn) that is
preserved by GL(n,C). Then V is preserved by U(n), so V ⊥ is preserved by U(n).
But this means that V and V ⊥ are preserved by the Lie algebra u(n), and hence also
by iu(n), since we’re dealing with a linear group. But then V and V ⊥ are preserved
by exp(u(n) ⊕ iu(n) ⊂ GL(n,C), and so are preserved by all of GL(n,C) (since an
arbitrary element is a product of exponentials). This implies that a reducible repre-
sentation is decomposable. Decomposing as many times as necessary (a finite number,
since Tm(Cn) is finite-dimensional), we get a completely reduced representation.

7a) If s̃ ∈ S, then s̃sym = 1
m!

∑
s s̃s = 1

m!

∑
s′ s
′ = sym, where s′ = s̃s. Hence

s̃ is the identity on sym(Tm(Cn)), and sym = 1
m!

∑
s̃ is also the identity. Since

(sym)2 = sym, sym is a projection onto its image.

(b) Since the tensor products ei1 ⊗ · · · ⊗ eim is a basis for Tm(Cn), sym of this
set spans Sm(Cn). But sym(e1 · · · em) = sym(em1

1 em2
2 · · · emn

n ), where we have just
rearranged the order of the terms to put all of the e1’s first, then all of the e2’s,
etc. Thus the sym-monomials are a spanning set. It’s not hard to see that they’re
orthogonal, using the inner product from (6), so they’re linearly independent.

(c) We just have to count the number of sym-monomials. This is the same as the
number of ways to put m items into n slots, repetitions allowed, with order irrelevent.
You may remember this problem from a probability class, but in case you don’t here’s
the derivation. That’s the number of ways to come up with a non-decreasing sequence
of m integers between 1 and n whose sum is m. By adding 0 to the first term, 1 to the
second, etc, this turns into the number of ways to write a strictly increasing sequence
of m integers between 1 and n+m− 1. But that’s the same as picking m items from
a set of n+m− 1 elements. So the answer is

(
m+n−1

m

)
.

(d) Without loss of generality we can assume that a is diagonal, since the trace
is invariant under conjugation. But for a diagonal matrix, the sym-monomials are
eigenvectors with eigenvalue εm1

1 · · · εmn
n (not εm1

n – yet another typo). Summing over
our basis gives the result.

Again assume that a is diagonal. Then det(1−za)−1 =
∏

(1−zεi)−1 =
∏

i(
∑

mi
εmi
i zmi).

The coefficient of zm is then ψm(a).

11. (a) There are several ways to do this. One is by brute force. Define y = a−1x,
so x = ay. We need to prove that

∑
i ∂

2/∂x2i =
∑

j ∂
2/∂y2j . Since ∂

∂yj
=
∑

i
∂xi
∂yj

∂
∂xi

=∑
i aij

∂
∂xi

. But then

∑
j

∂2

∂y2j
=
∑
i,j,k

aijakj
∂2

∂xi∂xk
=
∑
i,k

(aaT )ik
∂2

∂xi∂xk
=
∑
i

∂2

∂x2i



(b) The only real issue is SO(n)-invariance, which is because the measure on ν on
Sn−1 is SO(n)-invariant.

(c) Since ∆(x1 + ix2)
m = 0 (by direct computation, since 12 + i2 = 0), the kernel

of ∆ is an invariant subspace. But it isn’t all of Rm(Rn), since ∆(xm1 ) 6= 0. Thus the
representation is reducible.

Section 6.2

1. By the Peter-Weyl theorem, we can write f =
∑

i,j,λ f
λ
ijπ

λ
ij. If this sum in-

volves only a finite number of irreducible representations λ, then the left-translates
of L(a)f(x) = f(a−1x) =

∑
λ,i,j,k f

λ
ijπ

λ
ik(a

−1)πλkj(x) live in a finite-dimensional space,

as do the right-translates R(a)f(x) = f(xa) =
∑
fλijπ

λ
ik(x)πλkj(a). In fact they live in

the same finite-dimensional space, spanned by all of matrix elements of the represen-
tations that appear in the sum. In that case, we can pick up a single representation,
namely the direct sum of these irreps, with each irrep of dimension n counted n2

times. If we let a component of x be ei and the component of y be fλije
∗
j , then the

corresponding contribution to < π(a)x, y > will be fλijπ
λ
ij(a). Finally, since all func-

tions of G are approximated by polynomial functions, and polynomial functions fall
into finite-dimensional irreducible representations, being a polynomial is equivalent
to having components in only a finite number of representations.

On the other hand, if our sum involves infinitely many terms, it involves infinitely
many representations. The left translates cannot span a finite dimensional space,
since that space could be written as a finite number of irreps, and its matrix elements
would come from a finite sum of πλij’s. Same for right-translates. Since (c) and (d)
manifestly imply (a) and (b), the negation of (a) and (b) imply the negation of (c)
and (d). Thus (a), (b), (c), and (d) are equivalent.

2. (∑
a

f(a)a

)(∑
a

g(a)a

)
=

(∑
a

f(a)a

)(∑
b

g(b)b

)
=

∑
a,b

f(a)g(b)ab

=
∑
b,c

f(cb−1)g(b)c where c = ab

=
∑
c

(f ∗ g)(c)c =
∑
a

(f ∗ g)(a)a

(f ∗ g) ∗ h(a) =

∫
G

(f ∗ g)(ab−1)h(b)db



=

∫
G

∫
G

f(ab−1c−1)g(c)h(b)dbdc

=

∫
G

∫
G

f(ad−1)g(db−1)h(b)dbdd where d = cb

=

∫
G

f(ad−1)(g ∗ h)(d)dd

= f ∗ (g ∗ h)(a)

π(f ∗ g) =

∫
G

(f ∗ g)(a)π(a)

=

∫
G

∫
G

f(ab−1)g(b)π(a)dadb

=

∫
G

∫
G

f(c)g(b)π(cb)dcdb where c = ab−1

=

∫
G

∫
G

f(c)g(b)π(c)π(b) = π(f)π(g)

(d) First we note that ρ(πλij) = 0 if and only if λ 6' ρ. This follows from the
orthogonality relations. So if f, g ∈ M(G), then π(f) and π(g) are zero for all but
a finite number of representations. But then π(f ∗ g) = π(f)π(g) is zero for all but
finitely many representations. But then f ∗ g only has finitely many components and
is in M(G).


