Lie Groups Homework 3 Solutions

Problems from Section 2.3
2.3.4 Remember that we always take $k=\infty$ (although the argument works just as well for finite k). Suppose we are working with local coordinates where $a=$ $a_{0} \exp (X)$. If f is a smooth function of all matrices in a neighborhood of a_{0}, then $f(a)=f\left(a_{0} \exp (X)\right)$ is a composition of smooth functions, and so is smooth. For the converse, consider the group of matrices of the form $\left(\begin{array}{cc}\exp (i t) & 0 \\ 0 & \exp (\sqrt{2} i t)\end{array}\right)$. The function " t " is smooth as a function on the group, but cannot be extended to a continuous function on $G L(2, \mathbb{C})$.
2.3.5. THIS IS WRONG AS STATED! I apologize for not giving you a warning in time. The intervals given only give half of $S U(2)$, mapping to $S O(3)$ once.

Let \tilde{a} be the image of a under the homomorphism $S U(2) \rightarrow(S O(3)$. It is easy to check that this homomorphism sends the $a_{2,3}$ functions of this problem to the $a_{2,3}$ functions of Example 4. Since \tilde{a} can be written as $a_{3}(\theta) a_{2}(\phi) a_{3}(\psi)$ (using the $S O(3)$ functions), one of the preimages of \tilde{a} can be similarly written using the $S U(2)$ functions. That is, $\pm a=a_{3}(\theta) a_{2}(\phi) a_{3}(\psi)$.
2.3.9: This is part of Theorem 1 of section 2.6, and a proof can be found on page 78. We also just did it in class. For completeness, however, I'll reprise the argument here.

Let $g(t)=f(\exp (t X))$. Then $g(0)=1$ and $g^{\prime}(t)=d\left(\left.f(\exp ((t+s) X) / d x)\right|_{s=0}=\right.$ $d(\exp (t X) \exp (s X)) /\left.d s\right|_{s=0}=g(t) \phi(X)$. But the solution to this differential equation is $\exp (t \phi(X))$ satisfies, so $f(\exp (t X))=\exp (t \phi(X))$. Finally, set $t=1$.
2.3.10: (a) This was essentially done in the proof of Theorem 3. We constructed the analytic map $f(X, Y)=\exp (X)(1+Y)$ from M to M, and noted that by the inverse function theorem it had an analytic local inverse near 1. Since the leaves of G were $V=$ constant (with V denoting the function in the proof, NOT the open ball in \mathbb{R}^{N}), and $G \cup U$ is C^{1}-path-connected, this means that every point in $G \cup U$ has $V=0$, and hence maps to a ball around zero in $\mathbb{R}^{m} \times 0 \subset \mathbb{R}^{N}$.
(b) Part (a) showed that $1 \in G$ has a neighborhood in G which is the restriction of an open set (in M) to G. Multiplying on the left (or right) by a then gives us a neighborhood of $a \in G$ with the same property. This shows that the intrinsic topology of G is the same as the topology that G inherits from M.
(c) First work locally, then glue. Locally, if we have a C^{k} function on G, then it gives a C^{k} function on \mathbb{R}^{m}, which, when multiplied by a smooth function of the
remaining $N-m$ coordinates, gives a C^{k} function on \mathbb{R}^{N}, hence on a neighborhood of a in M. Now glue these local functions together using a smooth partition-of-unity of M. This shows that any C^{k} function on G can be extended to a C^{k} function on M. The fact that the restriction of a C^{k} function on M to G is C^{k} is trivial.

Section 2.5 Problems
2.5.2: As usual, we convert statement about G into statements about \mathbf{g} by differentiation, and statements about \mathbf{g} into statements about G by exponentiation.

Suppose that F is S-stable. Then for any path $a(t)$ in G with $a(0)=1$ and $a^{\prime}(0)=X$, and any vector $v \in F, a(t) v \in F$. Taking a derivative w.r.t. t at $t=0$ gives $X v \in F$, so F is \mathbf{g}-stable. Conversely, if F is \mathbf{g}-stable, then X maps F to F, so $\exp (X)$ maps F to F so $\Gamma(\mathbf{g})$ maps F to F. Since G is connected, $\Gamma(\mathbf{g})=G$.
2.5.3: We follow the suggestion in the book. Since the space of coboundaries is a vector space (isomorphic to \mathbf{g}^{*}), and since $\omega^{a(1)}-\omega^{a(0)}=\int_{0}^{1} \frac{d}{d t} \omega^{a(t)} d t$, it is enough to show that $\frac{d}{d t} \omega^{a(t)}$ is a coboundary. However, if $a^{\prime}(t)=a(t) Z$, then $\frac{d}{d t} A d(a)=$ $A d(a) \circ a d(Z)$. Letting $\tilde{X}=A d(a) X, \tilde{Y}=A d(a) Y$ and $\tilde{Z}=A d(a) Z$, we compute

$$
\begin{aligned}
\frac{d}{d t} \omega^{a}(X, Y) & =\omega(A d(a) a d(Z) X, \operatorname{Ad}(a) Y)+\omega(\operatorname{Ad}(a) X, \operatorname{Ad}(a) \circ \operatorname{ad}(Z) Y) \\
& =\omega([\tilde{Z}, \tilde{X}], \tilde{Y})+\omega(\tilde{X},[\tilde{Z}, \tilde{Y}]) \\
& =\omega([\tilde{Z}, \tilde{X}], \tilde{Y})+\omega([\tilde{Y}, \tilde{Z}], \tilde{X}) \\
& =\omega(\tilde{Z},[\tilde{X}, \tilde{Y}])=\omega^{a}(Z,[X, Y])
\end{aligned}
$$

which is a linear function of $[X, Y]$, and hence is a coboundary.
2.5.5: Going through the list of groups mentioned in 2.1: All of the groups mentioned prior to $S L(2, C)$ are odd-dimensiona as real spaces, so their Lie Algebras can't possibly be invariant under multiplication by i. $S L(2, C)$ is complex, as its Lie Algebra is the space of traceless matrices, which is a complex vector space. The only other comlpex spaces are the additive groups C^{n} and $G L(E)$, where E is a complex vector space.
2.5.6: Suppose that G is a compact linear group, and let $X \in \mathbf{g}$. Since the matrices $\exp (t X)$ must be bounded, the eigenvalues of X must be pure imaginary. If G is complex, then the eigenvalues of $i X$ must likewise be pure imaginary. In other
words, all of the eigenvalues of X must be zero. But then X is nilpotent, so $\exp (t X)$ is a polynomial in t. This polynomial is bounded if and only if all of the coefficients are zero, which means that X must be the zero matrix. Since \mathbf{g} is trivial, $G=\Gamma(\mathbf{g})$ must be the trivial group. (Note that we are using the fact that G is connected, hence that $G=\Gamma(\mathbf{g})$.)
2.5.11: (a) The fact that Z is self-adjoint is essential, because that means that Z is diagonalizable with real eigenvalues. Working in a basis where Z is a diagonal matrix (say with elements λ_{i} on the diagonal), then $[Z, X]$ is a matrix whose $i j$ element is $\left(\lambda_{j}-\lambda_{i}\right) X_{i j}$. That is, $a d(Z)$ acting on the space of ALL matrices is diagonalizable with real eigenvalues, so there do not exist any matrices X for which $(\operatorname{ad}(Z)-\lambda)^{p} X=0$ but $(a d(Z)-\lambda) X \neq 0$. Hence $a d(Z)$ is still diagonalizable when retricted to \mathbf{g}, which is the same thing as saying $\mathbf{g}=\oplus_{\lambda} \mathbf{g}_{\lambda}$.
(b): If $X \in \mathbf{g}_{\lambda}$ and $Y \in \mathbf{g}_{\mu}$, then $[Z,[X, Y]]=[[Z, X], Y]+[X,[Z, Y]]=[\lambda X, Y]+$ $[X, \mu Y]=(\lambda+\mu)[X, Y]$, so $[X, Y] \in \mathbf{g}_{\lambda+m u}$.
(c) If $[Z, X]=\lambda X$, then $\left[Z, X^{*}\right]=\left[Z^{*}, X^{*}\right]=[X, Z]^{*}=(-\lambda X)^{*}=-\lambda^{*} X^{*}=$ $-\lambda X^{*}$, since $\lambda=\lambda_{i}-\lambda_{j}$ is real.
(d) \mathbf{k} is a sub-algebra since the commutator of two anti-Hermitian matrices is anti-Hermitian. $\left([X, Y]^{*}=\left[Y^{*}, X^{*}\right]=[-Y,-X]=[Y, X]=-[X, Y]\right) \mathbf{q}$ is a subalgebra by (b). Now suppose that $Y \in \mathbf{g}$. We write $Y=Y_{+}+Y_{-}$, where Y_{+}is the projection of Y onto the non-negative eigenspaces of $a d(Z)$, and Y_{-}is the projection onto the negative eigenspaces. Then Y_{1} and Y_{2}^{*} are both in \mathbf{q}, and we can write $Y=\left(Y_{1}+Y_{2}^{*}\right)+\left(Y_{2}-Y_{2}^{*}\right) \in \mathbf{q}+\mathbf{k}$. Note that the $\operatorname{sum} \mathbf{g}=\mathbf{k}+\mathbf{q}$ is not necessarily a DIRECT sum. If $Y \in \mathbf{g}_{0}$, then $Y-Y^{*}$ is in both k and q.
(e) K is the intersection of G with $U(n)$ or $O(n)$, so the Lie Algebra of K is the intersection of \mathbf{g} with the anti-Hermitian matrices. In other words, $L(K)=\mathbf{k}$. By Proposition 10, $L(Q)$ is the normalizer of \mathbf{q}. Note that $Z \in \mathbf{g}_{0} \subset \mathbf{q}$. If X is in the normalizer of \mathbf{q}, then $[X, Z]=-a d(Z)(X)$ must be in q. But this is only possible if X is already in \mathbf{q}. Thus the normalizer of \mathbf{q} is contained in \mathbf{q}. However, \mathbf{q} is a sub-algebra, so it is contained in its normalizer, so $n_{\mathbf{g}}(\mathbf{q})=\mathbf{q}$. Since $\mathbf{g}=\mathbf{k}+\mathbf{q}$, by exercise 10 (which wasn't assigned) we only need to show that $K Q$ is closed.

To show closure, first note that Q is closed (since it is a normalizer) and that K is compact. Suppose that a sequence of matrices $k_{j} q_{j}$ converges in M to a matrix a. Since K is compact, there is a subsequence of k_{j} 's that converges to k_{∞}. So without loss of generality, suppose that $k_{j} \rightarrow k_{\infty}$. Then $k_{\infty}^{-1} k_{j} q_{j}$ converges to $k_{\infty}^{-1} a$. Since $k_{\infty}^{-1} k_{j}$ converges to the identity, this means that $k_{\infty}^{-1} a$ is a limit point of Q, and hence is in Q, so $a \in K Q$.
2.5.12: \mathbf{k} is the span of $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, and $K=S O(2) . \mathbf{q}$ is the space of uppertriangular traceless matrices, so Q is the space of upper-triangular matrices of determinant 1. Q has two connected components, one where the diagonal entries are positive and one where they are negative.

