
Lie Groups Homework 3 Solutions

Problems from Section 2.3

2.3.4 Remember that we always take k = ∞ (although the argument works just
as well for finite k). Suppose we are working with local coordinates where a =
a0 exp(X). If f is a smooth function of all matrices in a neighborhood of a0, then
f(a) = f(a0 exp(X)) is a composition of smooth functions, and so is smooth. For

the converse, consider the group of matrices of the form

(
exp(it) 0

0 exp(
√

2it)

)
. The

function ”t” is smooth as a function on the group, but cannot be extended to a
continuous function on GL(2,C).

2.3.5. THIS IS WRONG AS STATED! I apologize for not giving you a warning
in time. The intervals given only give half of SU(2), mapping to SO(3) once.

Let ã be the image of a under the homomorphism SU(2) → (SO(3). It is easy
to check that this homomorphism sends the a2,3 functions of this problem to the
a2,3 functions of Example 4. Since ã can be written as a3(θ)a2(φ)a3(ψ) (using the
SO(3) functions), one of the preimages of ã can be similarly written using the SU(2)
functions. That is, ±a = a3(θ)a2(φ)a3(ψ).

2.3.9: This is part of Theorem 1 of section 2.6, and a proof can be found on page
78. We also just did it in class. For completeness, however, I’ll reprise the argument
here.

Let g(t) = f(exp(tX)). Then g(0) = 1 and g′(t) = d(f(exp((t + s)X)/dx)|s=0 =
d(exp(tX) exp(sX))/ds|s=0 = g(t)φ(X). But the solution to this differential equation
is exp(tφ(X)) satisfies, so f(exp(tX)) = exp(tφ(X)). Finally, set t = 1.

2.3.10: (a) This was essentially done in the proof of Theorem 3. We constructed
the analytic map f(X, Y ) = exp(X)(1 + Y ) from M to M , and noted that by the
inverse function theorem it had an analytic local inverse near 1. Since the leaves of
G were V = constant (with V denoting the function in the proof, NOT the open ball
in RN), and G ∪ U is C1-path-connected, this means that every point in G ∪ U has
V = 0, and hence maps to a ball around zero in Rm × 0 ⊂ RN .

(b) Part (a) showed that 1 ∈ G has a neighborhood in G which is the restriction
of an open set (in M) to G. Multiplying on the left (or right) by a then gives us a
neighborhood of a ∈ G with the same property. This shows that the intrinsic topology
of G is the same as the topology that G inherits from M .

(c) First work locally, then glue. Locally, if we have a Ck function on G, then
it gives a Ck function on Rm, which, when multiplied by a smooth function of the



remaining N −m coordinates, gives a Ck function on RN , hence on a neighborhood
of a in M . Now glue these local functions together using a smooth partition-of-unity
of M . This shows that any Ck function on G can be extended to a Ck function on
M . The fact that the restriction of a Ck function on M to G is Ck is trivial.

Section 2.5 Problems

2.5.2: As usual, we convert statement about G into statements about g by differ-
entiation, and statements about g into statements about G by exponentiation.

Suppose that F is S-stable. Then for any path a(t) in G with a(0) = 1 and
a′(0) = X, and any vector v ∈ F , a(t)v ∈ F . Taking a derivative w.r.t. t at t = 0
gives Xv ∈ F , so F is g-stable. Conversely, if F is g-stable, then X maps F to F , so
exp(X) maps F to F so Γ(g) maps F to F . Since G is connected, Γ(g) = G.

2.5.3: We follow the suggestion in the book. Since the space of coboundaries is
a vector space (isomorphic to g∗), and since ωa(1) − ωa(0) =

∫ 1

0
d
dt
ωa(t)dt, it is enough

to show that d
dt
ωa(t) is a coboundary. However, if a′(t) = a(t)Z, then d

dt
Ad(a) =

Ad(a) ◦ ad(Z). Letting X̃ = Ad(a)X, Ỹ = Ad(a)Y and Z̃ = Ad(a)Z, we compute

d

dt
ωa(X, Y ) = ω(Ad(a)ad(Z)X,Ad(a)Y ) + ω(Ad(a)X,Ad(a) ◦ ad(Z)Y )

= ω([Z̃, X̃], Ỹ ) + ω(X̃, [Z̃, Ỹ ])

= ω([Z̃, X̃], Ỹ ) + ω([Ỹ , Z̃], X̃)

= ω(Z̃, [X̃, Ỹ ]) = ωa(Z, [X, Y ])

which is a linear function of [X, Y ], and hence is a coboundary.

2.5.5: Going through the list of groups mentioned in 2.1: All of the groups men-
tioned prior to SL(2, C) are odd-dimensiona as real spaces, so their Lie Algebras
can’t possibly be invariant under multiplication by i. SL(2, C) is complex, as its Lie
Algebra is the space of traceless matrices, which is a complex vector space. The only
other comlpex spaces are the additive groups Cn and GL(E), where E is a complex
vector space.

2.5.6: Suppose that G is a compact linear group, and let X ∈ g. Since the
matrices exp(tX) must be bounded, the eigenvalues of X must be pure imaginary. If
G is complex, then the eigenvalues of iX must likewise be pure imaginary. In other



words, all of the eigenvalues of X must be zero. But then X is nilpotent, so exp(tX)
is a polynomial in t. This polynomial is bounded if and only if all of the coefficients
are zero, which means that X must be the zero matrix. Since g is trivial, G = Γ(g)
must be the trivial group. (Note that we are using the fact that G is connected, hence
that G = Γ(g).)

2.5.11: (a) The fact that Z is self-adjoint is essential, because that means that Z is
diagonalizable with real eigenvalues. Working in a basis where Z is a diagonal matrix
(say with elements λi on the diagonal), then [Z,X] is a matrix whose ij element is
(λj−λi)Xij. That is, ad(Z) acting on the space of ALL matrices is diagonalizable with
real eigenvalues, so there do not exist any matrices X for which (ad(Z) − λ)pX = 0
but (ad(Z)−λ)X 6= 0. Hence ad(Z) is still diagonalizable when retricted to g, which
is the same thing as saying g = ⊕λgλ.

(b): If X ∈ gλ and Y ∈ gµ, then [Z, [X, Y ]] = [[Z,X], Y ] + [X, [Z, Y ]] = [λX, Y ] +
[X,µY ] = (λ+ µ)[X, Y ], so [X, Y ] ∈ gλ+ mu.

(c) If [Z,X] = λX, then [Z,X∗] = [Z∗, X∗] = [X,Z]∗ = (−λX)∗ = −λ∗X∗ =
−λX∗, since λ = λi − λj is real.

(d) k is a sub-algebra since the commutator of two anti-Hermitian matrices is
anti-Hermitian. ([X, Y ]∗ = [Y ∗, X∗] = [−Y,−X] = [Y,X] = −[X, Y ]) q is a sub-
algebra by (b). Now suppose that Y ∈ g. We write Y = Y+ + Y−, where Y+ is the
projection of Y onto the non-negative eigenspaces of ad(Z), and Y− is the projection
onto the negative eigenspaces. Then Y1 and Y ∗2 are both in q, and we can write
Y = (Y1 + Y ∗2 ) + (Y2 − Y ∗2 ) ∈ q + k. Note that the sum g = k + q is not necessarily
a DIRECT sum. If Y ∈ g0, then Y − Y ∗ is in both k and q.

(e) K is the intersection of G with U(n) or O(n), so the Lie Algebra of K is the
intersection of g with the anti-Hermitian matrices. In other words, L(K) = k. By
Proposition 10, L(Q) is the normalizer of q. Note that Z ∈ g0 ⊂ q. If X is in the
normalizer of q, then [X,Z] = −ad(Z)(X) must be in q. But this is only possible
if X is already in q. Thus the normalizer of q is contained in q. However, q is a
sub-algebra, so it is contained in its normalizer, so ng(q) = q. Since g = k + q, by
exercise 10 (which wasn’t assigned) we only need to show that KQ is closed.

To show closure, first note that Q is closed (since it is a normalizer) and that K
is compact. Suppose that a sequence of matrices kjqj converges in M to a matrix a.
Since K is compact, there is a subsequence of kj’s that converges to k∞. So without
loss of generality, suppose that kj → k∞. Then k−1∞ kjqj converges to k−1∞ a. Since
k−1∞ kj converges to the identity, this means that k−1∞ a is a limit point of Q, and hence
is in Q, so a ∈ KQ.



2.5.12: k is the span of

(
0 −1
1 0

)
, and K = SO(2). q is the space of upper-

triangular traceless matrices, so Q is the space of upper-triangular matrices of de-
terminant 1. Q has two connected components, one where the diagonal entries are
positive and one where they are negative.


