
Lie Groups, Problem Set # 5 Solutions

Like last week, this week’s problems were all from the book, namely Section 3.1,
problems 4, 9, 11, 12, 13 and Section 3.2, 1.

Section 2.6

3.1.4 (π): ForX, Y ∈ g, let ρ(X, Y ) = Re(Tr(XY )). If a ∈ G, then ρ(Ad(a)X,Ad(a)Y ) =
Re(Tr(aXa−1aY a−1)) = Re(Tr(aXY a−1)) = Re(Tr(XY )) = ρ(X, Y ). Thus ρ is an
Ad-invariant bilinear form on g. What remains is showing that ρ is non-degenerate.
This follows from the fact that all of the classical groups are invariant under Her-
mitian conjugation, which we showed in class. If a ∈ G, then a∗ ∈ G, so if X ∈ g,
X∗ ∈ g. However, ρ(X∗, X) = Re(Tr(X∗X)) is the sum of the squared norms of the
matrix entries of X, and is positive whenever X is non-zero.

3.1.9: Let C denote complex conjugation in Cn. We already showed that real
vector spaces can be viewed as complex vector spaces with extra structure, and that
real operators are just complex operators that commute with C. So Sp(n,R) is the
set of 2n×2n complex matrices that commute with C and preserve an anti-symmetric
bilinear form φ.

Define ω(X, Y ) = iφ(C(X), Y ) = iφ(X̄, Y ). This is sesquilinear and Hermitian:

ω(Y,X) = iφ(Ȳ , X) = −iφ(X, Ȳ ) = iφ(X̄, Y ) = ω(X, Y ). If a ∈ Sp(n,R), then a
preserves φ and commutes with C, so
ω(aX, aY ) = iφ(C(aX), aY ) = iφ(aC(X), aY ) = iφ(C(X), Y ) = ω(X, Y ). The form
ω has signature (n, n), since ω(C(X), C(X)) = iφ(X,C(X)) = −iφ(C(X), X) =
−ω(X,X). Since Sp(n,R) preserves an anti-symmetric bilinear form and a hermitian
form of signature (n, n), Sp(n,R) ⊂ Sp(n,C) ∩ SU(n, n).

For the converse, suppose that a preserves both φ and ω. Then a commutes with
C, since the preservation of ω depends on the identity aC(X) = C(aX). Thus a is a
real matrix that preserves φ, so Sp(n,C) ∩ SU(n, n) ⊂ Sp(n,R).

3.1.11. We will use the characterization of g from problem 13, below. (a) sl(n,C)
are the traceless n × n matrices. With n2 matrix entries and one linear condition,
this has dimension n2 − 1. (b) so(n,C) are the anti-symmetric matrices, spanned by
Ejk − Ekj with j < k. There are

(
n
2

)
= n(n− 1)/2 such basis vectors. (c) Using the

bilinear form

(
0 −1n

1n 0

)
, Sp(n,C) is the set of matrices

(
A B
C D

)
with D = −AT ,

B = BT and C = CT . There are n2 degrees of freedom for A, n(n + 1)/2 for B,
n(n+ 1)/2 for C, and none for D (which is determined by A), for a total of 2n2 + n

3.1.12. (a) su(n) is the set of traceless anti-Hermitian matrices, isu(n) is the set of



traceless Hermitian matrices, so su(n)⊕ isu(n) is the set of traceless matrices, which
is sl(n,C). (b) so(n) is the set of real anti-symmetric matrices, so so(n)⊕iso(n) is the
set of all anti-symmetric matrices, which is so(n,C) if we use the bilinear form 1n. (c)
Sp(n) is the space of traceless matrices that preserve an anti-symmetric bilinear form
φ on C2n and commute with J , so sp(n) is the space of traceless matrices satisfying
φ̃X = −XT φ̃ and commuting with J . The space isp(n) is matrices satisfying φ̃X =
−XT φ̃ and anti-commuting with J , since J is conjugate-linear. Thus sp(n)⊕ isp(n)
is all matrices satisfying φ̃X = −XT φ̃, regardless of J . But that is sp(n,C).

3.1.13 Recall that for sl(n, F ) is all traceless matrices over the field F , and that
L(Aut(φ)) is all traceless matrices satisfying φ̃X = −XT φ̃ for bilinear forms φ and
φ̃X = −X∗φ̃ for sesquilinear forms. To see this last point, note that φ(aX, aY ) =
φ(X, Y ) boils down to XTaT φ̃aY = XT φ̃Y for all X, Y (with T replaced by ∗ for
sesquilinear), hence aT φ̃a = φ̃, hence φ̃a = (aT )−1φ̃. Taking a derivative as a passes
through the origin gives φ̃X = −XT φ̃.

(a,b) These are nearly trivial. Let F = R or C. etX has determinant etTr(X), and
hence is in SL(n, F ) for all t if and only if Tr(X) = 0.

(c) As described on page 95, an n × n quaternionic matrix can be viewed as

a complex matrix of the form

(
a −b̄
b ā

)
, so gl(n,H) is all matrices of the form(

X −Ȳ
Y X̄

)
. Note that the trace of this matrix is 2Re(tr(X)). To sit in sl(n,H) we

need the exponential to have determinant 1, which means Re(tr(X)) = 0.

(d) For SO(p, q), we use the form given by φ̃ =

(
1p 0
0 −1q

)
, so the condition for

X =

(
A B
C D

)
to be in so(p, q) is

(
A B
−C −D

)
= −

(
AT −CT

BT −DT

)
,

implying that A and D are anti-symmetric and B = CT . In other words, X =(
A B
BT D

)
with A and D anti-symmetric. Note that the EXACT same description

works for SO(p, q,C).

(e) SO(n,C) is just SO(p, q,C) with q = 0. See (d).



(f) Since φ̃ =

(
0 −1
1 0

)
, we are looking for real matrices X =

(
A B
C D

)
with

(
−C −D
A B

)
= −

(
CT −AT

DT −BT

)
,

so B and C are symmetric and AT = −D.

(g) This is the exact same calculation as (f).

(h) Now we have(
A B
−C −D

)
=

(
1p 0
0 −1q

)(
A B
C D

)
= −

(
A∗ C∗

B∗ D∗

)(
1p 0
0 −1q

)
=

(
−A∗ C∗

−B∗ D∗

)
,

so A and D are anti-Hermitian and C = B∗. As a separate condition, the trace has
to be zero. (We automatically have that the traces of A and D are pure imaginary,
since the matrices are anti-Hermitian, but each one can have a non-zero trace as long
as the sum of the two traces is zero.) Note that this is not the answer given in the
book!! The book says that B∗ = −C, which would mean that the whole matrix X
would be anti-Hermitian (which is isn’t).

(i) Typo alert! This problem is about the algebra sp(p, q), not the group Sp(p, q).
Also, when Rossman first says “complex matrices” in this problem, I think he means
“quaternionic matrices”, since the resulting pattern is n × n and not 2n × 2n. The
second time he actually means “complex matrices”. He also makes the same sign
error as in (h).

The first part of this calculation, with quaternionic matrices, is identical to (h),

with the result that X =

(
A B
C D

)
with ĀT = −A, B̄T = C (not −C!) and

D̄T = −D. This automatically means that the traces of A and D have no real part,
so that the trace of the associated complex matrix is automatically zero.

Since a quaternionic matrix a + jb, with a and b complex, can be represented as

a block matrix

(
a −b̄
b ā

)
, we can represent A =

(
A1 −Ā2

A2 Ā1

)
, etc. yielding the

complex form of sp(p, q).

(j) SO∗(2n) preserves the anti-hermitian form given by the quaternionic matrix
j1n. This makes the criterion for being in the Lie algebra simply jZ = −Z∗j, which
is equivalent to Z∗ = jZj. Writing Z = X + jY , with X and Y complex, we have
X∗ − jY T = X∗ − Y ∗j = Z∗ = jZj = −X̄ − jȲ , so we must have X anti-symmetric

and Y Hermitian. This gives the complex form

(
X −Ȳ
Y X̄

)
, as indicated in the book.



3.2.1: Sadly, this problem exhibits yet another sign error! Recall that the change-
of-basis matrix for coordinates is the inverse of that for basis elements, in other words
it’s the change-of-basis for basis elements in the opposite direction. Our change-of-
basis is equivalent to ej = (e′j − ie′n+j)/

√
2, en+j = (e′j + ie′n+j)/

√
2. This implies that

ξ′j = (ξj − iξn+j)/
√

2 and ξ′n+j = (ξj + iξn+j)/
√

2. That’s not the right basis!

Instead, what we want is ξ′j = (ξj +ξn+j)/
√

2 and ξ′n+j = i(ξj−ξn+j)/
√

2, which is

achieved by the change-of-basis with e′j = (ej− ien+j)/
√

2 and e′n+j = (ej + ienj
)/
√

2.
Now let’s apply this change of basis to the quadratic form.

(a) We compute ξ′jη
′
j +ξ′j+nη

′
j+n = 1

2
[(ξj +ξn+j)(ηj +ηn+j)−(ξj−ξn+j)(ηj−ηn+j) =

ξjηn+j + ξn+jηj. Summing over j shows that the form in the problem is equal to the
form in (1) or (2). Since our form is now represented by the identity matrix, the
condition for being in the group reduces to ata = 1 (and det(a) = 1).

(b) ξ′j η̄
′
j = [ξj η̄j + ξj η̄n+j + ξn+j η̄j + ξn+j η̄n+j]/2, while ξ′n+j η̄

′
n+j = [ξj η̄j − ξj η̄n+j −

ξn+j η̄j + ξn+j η̄n+j]/2, so the sum of the two is ξj η̄j + ξn+j η̄n+j. The change-of-basis
we did in (a) changed the bilinear form but didn’t change the Hermitian form.

For a to be unitary, we must have a∗a = 1, but to be in SO(E) we must have
aTa = 1, so aT = a∗, which implies that a is a real matrix. So SO(E) ∩ U(E) =
SO(2n,R) or SO(2n+ 1,R).

(c) For this part of the problem, the change-of-basis given in the book is correct.
We only need to work on one block. Our original diagonal matrix had ej and en+j as
eigenvectors with eigenvalues ε and ε−1. Set ε = cos(2πθ) + i sin(2πθ), for some (pos-
sibly complex) θ, which implies ε−1 = cos(2πθ)− i sin(2πθ), insofar as cos2 + sin2 = 1,

even for complex arguments. Meanwhile, the matrix

(
cos(2πθ) − sin(2πθ)
sin(2πθ) cos(2πθ)

)
has

eigenvalues cos(2πθ) ± i sin(2πθ) and eigenvectors 1√
2

(
1
∓i

)
. That is, we want

ej = (e′j − ie′n+j)
√

2 and en+j = (e′j + ie′n+j)/
√

2, which is exactly what is written.

Note: If we had used the change-of-basis that we used for parts (a) and (b), I
believe that everything would have worked except that sin would have become − sin.
This can be corrected by changing the order of the basis {e′k} to e′n+1, e

′
1, e
′
n+2, e

′
2, . . ..

The main point that Rossman was making is correct, that the (complexification of
the) torus of Theorem 1 on p96 is the same as the diagonal subgroup H that we have
been studying for SO(n,C).


