Lie Groups, Problem Set # 9 Due Thursday, November 15

1) Consider the group G = O(2). Write out a set of coordinate patches for G, and construct a (non-trivial) left-invariant volume form. (The zero form doesn't count.) Then construct a right-invariant volume form. Show that these forms *cannot* be normalized to agree everywhere.

O(2) consists of matrices of one of two forms:

$$R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \quad \text{and} \quad T_{\theta} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}.$$

If we define $r = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, then $T_{\theta} = R_{\theta}r = rR_{-\theta}$. Note also that $rR_{\theta}r^{-1} = R_{-\theta}$. A left-invariant volume form is $d\theta$ on the R_{θ} 's and $-d\theta$ on the T_{θ} 's. A right-invariant volume form would be $d\theta$ on the R_{θ} 's and $d\theta$ on the T_{θ} 's. Note that these are the same on the identity component of O(2) but disagree on the other component. Since Ad(r) sends ∂_{θ} to $-\partial_{\theta}$, and hence $d\theta$ to $-d\theta$, there's no way to have a bi-invariant volume form.

2) Show that every real classical group is unimodular.

We already showed (problem 3.1.4 from homework #5) that the Lie algebra of every real classical group has a non-degenerate Ad-invariant bilinear form. Call this form $\phi_{\mathbf{g}}$. For each $a \in G$, $Ad(a) : \mathbf{g} \to \mathbf{g}$ is in $Aut(\phi_{\mathbf{g}})$. But this means that $Ad(a)^T \tilde{\phi}_{\mathbf{g}} Ad(a) = \tilde{\phi}_{\mathbf{g}}$, hence that $\det(Ad(a)^T) \det(\tilde{\phi}_{\mathbf{g}}) \det(Ad(a)) = \det(\tilde{\phi}_{\mathbf{g}})$. Since $\phi_{\mathbf{g}}$ is non-degenerate, $\det(\tilde{\phi}_{\mathbf{g}}) \neq 0$, so $\det(Ad(a))^2 = 1$, so $|\det(Ad(a))| = 1$.

Note that this does NOT prove that det(Ad(a)) = +1. We just saw a counterexample. In problem 1, det(Ad(r)) = -1.

3) Show that $SL(2,\mathbb{R})$ is unimodular but does not admit a bi-invariant metric.

Since this is a classical group, it is unimodular. Let $a = \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix}$ and let $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. If we had a bi-invariant metric, then we would have $\langle Ad(a)X|Ad(a)X \rangle = \langle X|X \rangle$. But Ad(a)X = 4X, so $\langle Ad(a)X|Ad(a)X \rangle = 16\langle X|X \rangle$. But an inner product must have $\langle X|X \rangle > 0$, so we have a contradiction.

Note that $sl(2, \mathbb{R})$ does have a symmetric ad-invariant bilinear form of signature (2, 1), namely Tr(XY), which can be extended to a bi-invariant bilinear form on all of $SL(2, \mathbb{R})$. But a symmetric non-degenerate bi-linear form is not an inner product. An inner product must be positive! By contrast, $Tr(X^2) = 0$.

4) Problem 5.2.3 Note: I think he got j_{ℓ} and j_r mixed up in the statement of part (b). Also, we should have positive powers of α_i in the definitions of j_r and j_{ℓ} . State and prove the correct result. Don't worry about the correspondence with equation (7).

(a) We need to show that $d_l(a) = d_r(a) = |\det(a)|^{-n} da$, or equivalently that $da = |\det(a)|^n d_l(a) = |\det(a)|^n d_r(a)$. Let's first work with d_l . We proceed as in the proof (in class) of Weyl's Integration Formula, taking a basis for **g**, mapping it to *a* by left translation, and evaluating it.

Let e_1, \ldots, e_n be a basis for \mathbb{R}^n . Then $E_{ij} = e_i e_j^T$ is a basis for \mathbf{g} . But $aE_{ij} = (ae_i)e_j^T$. For each fixed j, the subspace spanned by the E_{ij} 's is preserved by a_ℓ , and the determinant of the action on this subspace is just det(a). Since there are n such subspaces, the determinant of the action of a_ℓ on the n^2 dimensional space of all matrices is $(\det(a))^n$, and so the volume element transforms by $|\det(a)|^n$.

The calculation for right-translation is similar, since $E_{ij}a = e_i(a^T e_j)^T$. Now it's the subspaces with a given *i* that are preserved by right-multiplication by *a*, and the action of a_r^{-1} on each one has a determinant of $\det(a^T) = \det(a)$. There are *n* such subspaces, so there are *n* powers of $|\det(a)|$ in the transformation of the volume element.

(b) Now a basis for **g** is the E_{ij} 's with $i \leq j$. The action of a_{ℓ} once again preserves the space spanned by the E_{ij} 's with fixed j. The action on this j-dimensional space is given by the upper left $j \times j$ block of a, whose determinant is $\alpha_1 \cdots \alpha_j$. Multiplying things out for each j we get n powers of α_1 , n-1 of α_2 , etc. In other words, da = $\prod_j |\alpha_j|^{n+1-j} d_{\ell}(a)$. (In Rossman's notation, that's $j_r^{-1}(a)d_{\ell}(a)$, so $d_{\ell}(a) = j_r(a)da$.)

For right-multiplication, the subspaces with *i* fixed are preserved, and the action is by the lower-right $n + 1 - i \times n + 1 - i$ block, with determinant $\alpha_i \cdots \alpha_n$, so $da = \prod_i |\alpha_i|^i d_r(a)$, or $d_r(a) = j_\ell(a) da$.

5) Problem 5.2.5.

The factor of $\frac{1-\cos(||X||)}{||X||^2}$ comes from the Jacobian of the exponential map. Recall (Theorem 5 on page 15) that $d \exp_X = \exp(X) \frac{1-\exp(-ad(X))}{ad(X)}$, and that the adjoint representation of SO(3) is just SO(3) itself. This means that the determinant of $d \exp_X$ is the determinant of $\frac{1-\exp(-X)}{X}$, since $\det(\exp(X)) = 1$.

Let $f(s) = \frac{1-e^{-s}}{s} = \sum_{k=0}^{\infty} (-1)^k s^k / (k+1)!$. Our determinant is the product of $f(\lambda_i)$, where λ_i range over the eigenvalues of X, namely $\pm i \|X\|$ and 0. Since f(0) = 1, this leaves $(1 - e^{-i\|X\|})(1 - e^{i\|X\|}) / \|X\|^2 = 2(1 - \cos(\|X\|) / \|X\|^2$.

Now for normalization. We want the integral over the ball of radius π in **g** to

be 1, but $\int_{\|X\|<\pi} \frac{1-\cos(\|X\|)}{\|X\|^2} d^3X = \int_0^{\pi} \frac{1-\cos(r)}{r^2} 4\pi r^2 dr = 4\pi^2$. So our normalized volume element is $\frac{1}{4\pi^2} \frac{1-\cos(\|X\|)}{\|X\|^2} d^3X$, as required.

6) Problem 5.2.8

Since $SL(2, \mathbb{R})$ is unimodular, we can work with either the left-invariant measure or the right-invariant measure, since they're the same. It looks like this problem is most easily done with right-invariance.

(a) To figure out the right-invariant measure, we need to compute $(\partial_{\theta} a)a^{-1}$, $\partial_{\sigma}aa^{-1}$, and $\partial_{\tau}aa^{-1}$, and apply the standard volume form on **g** to the result. With

$$a(\theta,\sigma,\tau) = k(\theta)n(\sigma)a(\tau) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} 1 & \sigma \\ 0 & 1 \end{pmatrix} \begin{pmatrix} e^{\tau} & 0 \\ 0 & e^{-\tau} \end{pmatrix},$$

we have

$$\partial_{\theta}aa^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = k(\theta) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} k(-\theta),$$
$$\partial_{\sigma}aa^{-1} = \begin{pmatrix} -\sin(\theta)\cos(\theta) & \cos^{2}(\theta) \\ -\sin^{2}(\theta) & \sin(\theta)\cos(\theta) \end{pmatrix} = k(\theta) \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} k(-\theta),$$
$$\partial_{\tau}aa^{-1} = k(\theta) \begin{pmatrix} 1 & -2\sigma \\ 0 & -1 \end{pmatrix} k(-\theta)$$

Since $\det(ad(k(\theta))) = 1$, feeding these three elements of **g** to the volume form is the same as feeding $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & -2\sigma \\ 0 & -1 \end{pmatrix}$, which yields a constant, independent of θ , σ and τ . In other words, the invariant measure is an (arbitrary) multiple of $d\theta d\sigma d\tau$.

(b) If we instead use the parametrization $a(\theta, \sigma, \tau) = k(\theta)a(\tau)n(\sigma)$, then

$$(\partial_{\theta}a)a^{-1} = k(\theta) \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} k(-\theta),$$
$$(\partial_{\tau}a)a^{-1} = k(\theta) \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} k(-\theta),$$
$$(\partial_{\sigma}a)a^{-1} = k(\theta) \begin{pmatrix} 0 & e^{2\tau}\\ 0 & 0 \end{pmatrix} k(-\theta),$$

so our invariant measure is a multiple of $e^{2\tau} d\theta d\sigma d\tau$.