
Lie Groups, Problem Set # 9
Due Thursday, November 15

1) Consider the group G = O(2). Write out a set of coordinate patches for G, and
construct a (non-trivial) left-invariant volume form. (The zero form doesn’t count.)
Then construct a right-invariant volume form. Show that these forms cannot be
normalized to agree everywhere.

O(2) consists of matrices of one of two forms:

Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
and Tθ =

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
.

If we define r =

(
1 0
0 −1

)
, then Tθ = Rθr = rR−θ. Note also that rRθr

−1 = R−θ. A

left-invariant volume form is dθ on the Rθ’s and −dθ on the Tθ’s. A right-invariant
volume form would be dθ on the Rθ’s and dθ on the Tθ’s. Note that these are the
same on the identity component of O(2) but disagree on the other component. Since
Ad(r) sends ∂θ to −∂θ, and hence dθ to −dθ, there’s no way to have a bi-invariant
volume form.

2) Show that every real classical group is unimodular.

We already showed (problem 3.1.4 from homework #5) that the Lie algebra of
every real classical group has a non-degenerate Ad-invariant bilinear form. Call this
form φg. For each a ∈ G, Ad(a) : g → g is in Aut(φg). But this means that
Ad(a)T φ̃gAd(a) = φ̃g, hence that det(Ad(a)T ) det(φ̃g) det(Ad(a)) = det(φ̃g). Since
φg is non-degenerate, det(φ̃g) 6= 0, so det(Ad(a))2 = 1, so | det(Ad(a))| = 1.

Note that this does NOT prove that det(Ad(a)) = +1. We just saw a counterex-
ample. In problem 1, det(Ad(r)) = −1.

3) Show that SL(2,R) is unimodular but does not admit a bi-invariant metric.

Since this is a classical group, it is unimodular. Let a =

(
2 0
0 1/2

)
and let X =(

0 1
0 0

)
. If we had a bi-invariant metric, then we would have 〈Ad(a)X|Ad(a)X〉 =

〈X|X〉. But Ad(a)X = 4X, so 〈Ad(a)X|Ad(a)X〉 = 16〈X|X〉. But an inner product
must have 〈X|X〉 > 0, so we have a contradiction.

Note that sl(2,R) does have a symmetric ad-invariant bilinear form of signature
(2, 1), namely Tr(XY ), which can be extended to a bi-invariant bilinear form on all
of SL(2,R). But a symmetric non-degenerate bi-linear form is not an inner product.
An inner product must be positive! By contrast, Tr(X2) = 0.



4) Problem 5.2.3 Note: I think he got j` and jr mixed up in the statement of part
(b). Also, we should have positive powers of αi in the definitions of jr and j`. State
and prove the correct result. Don’t worry about the correspondence with equation
(7).

(a) We need to show that dl(a) = dr(a) = | det(a)|−nda, or equivalently that
da = | det(a)|ndl(a) = | det(a)|ndr(a). Let’s first work with dl. We proceed as in the
proof (in class) of Weyl’s Integration Formula, taking a basis for g, mapping it to a
by left translation, and evaluating it.

Let e1, . . . , en be a basis for Rn. Then Eij = eie
T
j is a basis for g. But aEij =

(aei)e
T
j . For each fixed j, the subspace spanned by the Eij’s is preserved by a`, and

the determinant of the action on this subspace is just det(a). Since there are n such
subspaces, the determinant of the action of a` on the n2 dimensional space of all
matrices is (det(a))n, and so the volume element transforms by | det(a)|n.

The calculation for right-translation is similar, since Eija = ei(a
T ej)

T . Now it’s
the subspaces with a given i that are preserved by right-multiplication by a, and
the action of a−1r on each one has a determinant of det(aT ) = det(a). There are n
such subspaces, so there are n powers of | det(a)| in the transformation of the volume
element.

(b) Now a basis for g is the Eij’s with i ≤ j. The action of a` once again preserves
the space spanned by the Eij’s with fixed j. The action on this j-dimensional space
is given by the upper left j×j block of a, whose determinant is α1 · · ·αj. Multiplying
things out for each j we get n powers of α1, n − 1 of α2, etc. In other words, da =∏

j |αj|n+1−jd`(a). (In Rossman’s notation, that’s j−1r (a)d`(a), so d`(a) = jr(a)da.)

For right-multiplication, the subspaces with i fixed are preserved, and the action
is by the lower-right n + 1 − i × n + 1 − i block, with determinant αi · · ·αn, so
da =

∏
i |αi|idr(a), or dr(a) = j`(a)da.

5) Problem 5.2.5.

The factor of 1−cos(‖X‖)
‖X‖2 comes from the Jacobian of the exponential map. Recall

(Theorem 5 on page 15) that d expX = exp(X)1−exp(−ad(X))
ad(X)

, and that the adjoint

representation of SO(3) is just SO(3) itself. This means that the determinant of

d expX is the determinant of 1−exp(−X)
X

, since det(exp(X)) = 1.

Let f(s) = 1−e−s

s
=
∑∞

k=0(−1)ksk/(k + 1)!. Our determinant is the product of
f(λi), where λi range over the eigenvalues of X, namely ±i‖X‖ and 0. Since f(0) = 1,
this leaves (1− e−i‖X‖)(1− ei‖X‖)/‖X‖2 = 2(1− cos(‖X‖)/‖X‖2.

Now for normalization. We want the integral over the ball of radius π in g to



be 1, but
∫
‖X‖<π

1−cos(‖X‖)
‖X‖2 d3X =

∫ π
0

1−cos(r)
r2

4πr2dr = 4π2. So our normalized volume

element is 1
4π2

1−cos(‖X‖)
‖X‖2 d3X, as required.

6) Problem 5.2.8

Since SL(2,R) is unimodular, we can work with either the left-invariant measure
or the right-invariant measure, since they’re the same. It looks like this problem is
most easily done with right-invariance.

(a) To figure out the right-invariant measure, we need to compute (∂θa)a−1,
∂σaa

−1, and ∂τaa
−1, and apply the standard volume form on g to the result. With

a(θ, σ, τ) = k(θ)n(σ)a(τ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
1 σ
0 1

)(
eτ 0
0 e−τ

)
,

we have

∂θaa
−1 =

(
0 −1
1 0

)
= k(θ)

(
0 −1
1 0

)
k(−θ),

∂σaa
−1 =

(
− sin(θ) cos(θ) cos2(θ)
− sin2(θ) sin(θ) cos(θ)

)
= k(θ)

(
0 1
0 0

)
k(−θ),

∂τaa
−1 = k(θ)

(
1 −2σ
0 −1

)
k(−θ)

Since det(ad(k(θ))) = 1, feeding these three elements of g to the volume form is

the same as feeding

(
0 −1
1 0

)
,

(
0 1
0 0

)
and

(
1 −2σ
0 −1

)
, which yields a constant,

independent of θ, σ and τ . In other words, the invariant measure is an (arbitrary)
multiple of dθdσdτ .

(b) If we instead use the parametrization a(θ, σ, τ) = k(θ)a(τ)n(σ), then

(∂θa)a−1 = k(θ)

(
0 −1
1 0

)
k(−θ),

(∂τa)a−1 = k(θ)

(
1 0
0 −1

)
k(−θ),

(∂σa)a−1 = k(θ)

(
0 e2τ

0 0

)
k(−θ),

so our invariant measure is a multiple of e2τdθdσdτ .


