Individual Homework \#9: Due November 24

Please READ Section 11.2, and Section 11.4 up to, but not including, the subsection "Partial Fractions" on page 725 .

Please DO exercises 1 (all parts EXCEPT for (p) and (r)), 2a-g, 4, 5, 7, 8b, Section 11.2 (pp. 708-710); and exercises 1, 2abcd, Section 11.4 (pp. 729-733).

Hints and Notes:

- For exercises 1 and 2, pages 708-709, don't worry about the long instructions in the text on how to do the problems. Just do them as we did in class, using $u=\ldots$ and $d u=\ldots$. (In particular, you don't need to check any results here numerically.)
- For exercise 1 g , page 708 , first write $\tan x=\sin x / \cos x$; then try a substitution. For exercise 1i, page 708, try $u=x / 2$, and then note (you may assume this) that $d / d u[\sec (u)]=\sec (u) \tan (u)$. For exercise 1 h , page 708, try $u=\tan (x)$. For exercise 1q, page 708, try $u=2 y$, and then remember what the derivative of $\arctan (u)$ is. For exercise 2 g , page 709 , try $u=x / 2$, and then (again) remember what the derivative of $\arctan (u)$ is.
- For exercise 7a, page 710, please use Matlab for your graph. Also, for exercise 7d, page 710 , think about what happens to your answer from part (c) as b goes to ∞. (Keep in mind that $e^{-b^{2}}$ approaches zero as b grows larger and larger without bound.)

