On the axes below is the graph of a certain function $f(x)$.

1. By inspection (just eyeball it), mark the points where the graph of $f(x)$ is steepest. Do not include the endpoints of the graph (we're imagining that the graph continues on forever in both directions).
2. Fill in the blanks below: each blank is to be filled in with one of the following terms (some terms may be used more than once, and some not at all):
derivative positive negative $f(x)$ zero

To say that the graph of $f(x)$ is at its steepest is to say that the slope, or in other words the \qquad , of $f(x)$ is bottoming out (as negative as it can get) or peaking (as \qquad as it can get). But we've seen before that, when a function bottoms out or peaks, its \qquad equals zero. SO: to say that the graph of $f(x)$ is at its steepest is to say that the \qquad of the \qquad of $f(x)$ equals \qquad -.
3. Find the derivative $f^{\prime}(x)$ of the function $f(x)$ graphed above, given that

$$
f(x)=\frac{x^{4}}{12}+\frac{x^{3}}{6}-3 x^{2}-2 x+4
$$

4. For $f(x)$ as above, find $f^{\prime \prime}(x)$, which is called the second derivative of $f(x)$, and means the derivative of the derivative of $f(x)$. (That is, $f^{\prime \prime}(x)=\frac{d}{d x}\left[f^{\prime}(x)\right]$.)
5. Solve the equation $f^{\prime \prime}(x)=0$ for x.
6. Do your results from exercises 1 and 5 above agree? If not, do you want to adjust one of those answers? Please explain.
7. Consider a disease evolving according to the usual SIR equations

$$
\begin{aligned}
S^{\prime} & =-a S I, \\
I^{\prime} & =a S I-b I, \\
R^{\prime} & =\quad b I .
\end{aligned}
$$

(a) Explain carefully why (as the graph suggests) R is at its steepest at the very point where I peaks. Hint: use the equation for R^{\prime} to obtain an equation for $R^{\prime \prime}$. Then use ideas from the exercises above.
(b) By differentiating the above equation for S^{\prime} (using the product rule), and then plugging in for S^{\prime} and I^{\prime} on the right hand side of your result, show that

$$
S^{\prime \prime}=-a^{2} S^{2} I+a b S I+a^{2} S I^{2} .
$$

(c) Explain why, when S is at its steepest,

$$
S-I=\frac{b}{a} .
$$

