October 20, 2014 Worksheet 15: Ebola, area and derivatives

In Mini-Project 3 we will see that, if $D(t)$ denotes the total, or cumulative, number of deaths (at time t, with t measured in days) since the start of a certain Ebola outbreak, then $D(t)$ can be modeled reasonably well by the arctangent function sketched on the axes below.

We will also see that the daily death rate $R(t)=D^{\prime}(t)$, in deaths/day, can be modeled by the following bell-shaped curve:

October 20, 2014 Worksheet 15: Ebola, area and derivatives
Note that we've dashed in a rectangle over each of the first three intervals of length 5, on the above t axis. The height of each rectangle is just the value of the function $R(t)$ at the right endpoint of the interval in question.

1. Continue the process of drawing rectangles over each of the above subintervals of length 5 , on the t axis, with the height of each rectangle being the value of $R(t)$ at the rightmost edge of the rectangle.
2. For any time T, Let $A(T)$ denote the total area of the rectangles you've sketched in, between $t=0$ and $t=T$. Explain carefully why $A(T)$ should be approximately equal to $D(T)$ (where $D(t)$ is as described on page 1 of this tutorial).
3. Let's check how good this approximation is, as follows. Compute $A(5), A(10), A(15)$, \ldots, all the way up to $A(90)$. (Recall that each rectangle has base length 5 , and height given by the value of $R(t)$ at the right endpoint of the rectangle.) You can do your computations, and write out your answers, in the space below and on the next page.

October 20, 2014 Worksheet 15: Ebola, area and derivatives

October 20, 2014 Worksheet 15: Ebola, area and derivatives
4. Now, plot your points $A(t)$, as a function of t, on the same set of axes as we used to plot $D(t)$, on page 1. How well does $A(t)$ approximate $D(t)$? What would we do to get a better approximation?
5. THE MORAL OF THE STORY IS (fill in the blanks): In general, if $R(t)$ is the of $D(t)$, then $D(t)$ is given by the \qquad under the graph of the function $R(t)!$!

