Goal: To practice using differentiation formulas and rules (sum rule; constant multiple rule; chain rule)

1. **Basic derivatives.** Find each of the following derivatives. At the end of each exercise, in the space provided, indicate which rule(s) (sum and/or constant multiple) you used. If you used a rule more than once, state how many times you used it.

Example. Find f'(x) if $f(x) = 3x - 4x^2 + 5 \cdot 17^x$.

SOLUTION. $f'(x) = 3 - 8x + 5k_{17} \cdot 17^x$.

Rules used: _____ Sum rule (twice); constant multiple rule (three times).

(a) Find
$$f'(x)$$
 if $f(x) = 5\sin(x) + 4\cos(x) - \frac{1}{27}\tan(x)$.

Rules used:

(b) Find
$$\frac{d}{dx} \left[x^5 + 5^x + \sqrt[5]{x} + \frac{1}{x^5} \right]$$
.

Rules used: ______(c) Find $\frac{d}{dw} [\pi \cos(w) + \cos(\pi) + \pi^{\pi} + \pi w^{\pi}].$

Rules used:

- 2. (For this problem, you don't have to state which rules you used; just do the math.)
 - (a) Find g'(x) if $g(x) = 2x^3 + 7x^2 12x + 5$.

(b) Find g''(x) (which is called the *second derivative* of g(x), and just means the derivative of g'(x)) if g(x) is as in part (a) above.

(c) Find g'''(x) (which is called the *third derivative* of g(x), and just means the derivative of g''(x)) if g(x) is as in part (a) above.

(d) Find $g^{(4)}(x)$ (which is called the *fourth derivative* of g(x), and just means the derivative of g'''(x)) if g(x) is as in part (a) above.

(e) In general, if g(x) is a polynomial of degree n (that is, the highest power of x appearing in g(x) is the nth power), then what do you think you get if you compute $g^{(n+1)}(x)$ (the (n+1)st derivative of g(x))?

3. Chain rule. Express each of the given functions of x in the form

$$y = f(u)$$
 where $u = g(x)$.

Then use the chain rule to differentiate.

Example. Find $\frac{dy}{dx}$ if $y = 4^{\sin(x)}$. **SOLUTION.** $y = 4^u$ where $u = \sin(x)$. So

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
$$= \frac{d}{du} [4^u] \cdot \frac{d}{dx} [\sin(x)]$$
$$= k_4 \, 4^u \cdot \cos(x) = k_4 \, 4^{\sin(x)} \cos(x).$$

(a) Find $\frac{dy}{dx}$ if $y = \sin(4^x)$.

(b) Find
$$\frac{dz}{dq}$$
 if $z = \tan(7q^2)$.

(c) Find $\frac{dz}{dq}$ if $z = 7 \tan^2(q)$. (Recall that $\tan^2(q)$ is shorthand for $(\tan(q))^2$.)

(d) Find y' if $y = 3^{4^x}$. (Note that 3^{4^x} means $3^{(4^x)}$, not $(3^4)^x$.)

(e) Find y' if $y = 3^{x^4}$.

(f) Find y' if $y = x^{3^4}$.