September 25, 2014
Goal: To practice using differentiation formulas and rules (sum rule; constant multiple rule; chain rule)

1. Basic derivatives. Find each of the following derivatives. At the end of each exercise, in the space provided, indicate which rule(s) (sum and/or constant multiple) you used. If you used a rule more than once, state how many times you used it.

Example. Find $f^{\prime}(x)$ if $f(x)=3 x-4 x^{2}+5 \cdot 17^{x}$.
SOLUTION. $f^{\prime}(x)=3-8 x+5 k_{17} \cdot 17^{x}$.
Rules used: _ Sum rule (twice); constant multiple rule (three times).
(a) Find $f^{\prime}(x)$ if $f(x)=5 \sin (x)+4 \cos (x)-\frac{1}{27} \tan (x)$.

Rules used: \qquad
(b) Find $\frac{d}{d x}\left[x^{5}+5^{x}+\sqrt[5]{x}+\frac{1}{x^{5}}\right]$.

Rules used: \qquad
(c) Find $\frac{d}{d w}\left[\pi \cos (w)+\cos (\pi)+\pi^{\pi}+\pi w^{\pi}\right]$.

Rules used:

\qquad
2. (For this problem, you don't have to state which rules you used; just do the math.)
(a) Find $g^{\prime}(x)$ if $g(x)=2 x^{3}+7 x^{2}-12 x+5$.
(b) Find $g^{\prime \prime}(x)$ (which is called the second derivative of $g(x)$, and just means the derivative of $\left.g^{\prime}(x)\right)$ if $g(x)$ is as in part (a) above.
(c) Find $g^{\prime \prime \prime}(x)$ (which is called the third derivative of $g(x)$, and just means the derivative of $\left.g^{\prime \prime}(x)\right)$ if $g(x)$ is as in part (a) above.
(d) Find $g^{(4)}(x)$ (which is called the fourth derivative of $g(x)$, and just means the derivative of $\left.g^{\prime \prime \prime}(x)\right)$ if $g(x)$ is as in part (a) above.
(e) In general, if $g(x)$ is a polynomial of degree n (that is, the highest power of x appearing in $g(x)$ is the nth power), then what do you think you get if you compute $g^{(n+1)}(x)$ (the $(n+1)$ st derivative of $\left.g(x)\right)$?
3. Chain rule. Express each of the given functions of x in the form

$$
y=f(u) \text { where } u=g(x) \text {. }
$$

Then use the chain rule to differentiate.
Example. Find $\frac{d y}{d x}$ if $y=4^{\sin (x)}$.
SOLUTION. $y=4^{u}$ where $u=\sin (x)$. So

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \cdot \frac{d u}{d x} \\
& =\frac{d}{d u}\left[4^{u}\right] \cdot \frac{d}{d x}[\sin (x)] \\
& =k_{4} 4^{u} \cdot \cos (x)=k_{4} 4^{\sin (x)} \cos (x) .
\end{aligned}
$$

(a) Find $\frac{d y}{d x}$ if $y=\sin \left(4^{x}\right)$.
(b) Find $\frac{d z}{d q}$ if $z=\tan \left(7 q^{2}\right)$.

September 25, $2014 \quad$ Worksheet 7: Derivative practice
(c) Find $\frac{d z}{d q}$ if $z=7 \tan ^{2}(q)$. (Recall that $\tan ^{2}(q)$ is shorthand for $(\tan (q))^{2}$.)
(d) Find y^{\prime} if $y=3^{4^{x}}$. (Note that $3^{4^{x}}$ means $3^{\left(4^{x}\right)}$, not $\left(3^{4}\right)^{x}$.)
(e) Find y^{\prime} if $y=3^{x^{4}}$.
(f) Find y^{\prime} if $y=x^{3^{4}}$.

