GOAL: To explore the product rule in various ways

Today's question: is the derivative of a product equal to the corresponding product of the derivatives? That is: is it true, in general, that

$$
\begin{equation*}
\frac{d}{d t}[f(t) g(t)]=f^{\prime}(t) g^{\prime}(t) ? \tag{*}
\end{equation*}
$$

1. Let's investigate $(*)$ by means of an example. Let $f(t)=t$ and $g(t)=t^{2}$.
(a) Calculate $\frac{d}{d t}[f(t) g(t)]$, i.e. first calculate the product $f(t) g(t)$, and then take the derivative.
(b) Calculate $f^{\prime}(t) g^{\prime}(t)$; that is, first calculate the individual derivatives, then take the product.
(c) For these functions $f(t)$ and $g(t)$, is equation $(*)$ true?
2. We are now going to think about the derivative of a product - that is, about things like $\frac{d}{d t}[f(t) g(t)]$ - intuitively, as follows.

Imagine a rectangular oil slick (OK, not realistic, but bear with me), whose baselength and height vary with time t - say the baselength is $f(t)$, and the height is $g(t)$.

Fill in the blanks: The area of the oil slick is then the product \qquad . So
to understand $\frac{d}{d t}[f(t) g(t)]$, we should try to understand the rate of \qquad of this area!

To do so, suppose the height $g(t)$ of the rectangle changes by a small amount. Then the overall change in the area of the rectangle will be relatively LARGE if the baselength $f(t)$ of the rectangle is large, and will be relatively SMALL if the baselength $f(t)$ of the rectangle is \qquad .

Similarly, suppose the baselength \qquad of the rectangle changes by a small amount. Then the overall change in the area of the rectangle will be relatively ___ if the height $g(t)$ of the rectangle is large, and will be relatively
SMALL if the \qquad $g(t)$ of the rectangle is \qquad -

In general, then, the change in the area of the rectangle will depend not only on the amounts by which the height $g(t)$ and baselength \qquad change, but also on the magnitudes of $f(t)$ and \qquad . Therefore, the rate of change $d[f(t) g(t)] / d t$ of the \qquad of the rectangle will depend not only on the rates of change $f^{\prime}(t)$ and \qquad , but also on the quantities
\qquad and $g(t)$ themselves.
3. Spoiler alert!! It turns out that the correct formula for the derivative of a product is given by the following, called the product rule (go figure!!):

$$
\frac{d}{d t}[f(t) g(t)]=f(t) g^{\prime}(t)+g(t) f^{\prime}(t)
$$

Explain how this formula fits in with the discussion of exercise 2 above.
4. Use the product rule to find $\frac{d}{d t}[f(t) g(t)]$, where $f(t)$ and $g(t)$ are again as in exercise 1 above. Does your answer agree with the result of exercise 1(a)?

October 2, 2014
Worksheet 9: The product rule
5. Product rule practice: find
(a) $\frac{d}{d x}[x \sin (x)]$.
(b) $k^{\prime}(x)$ if $k(x)=x^{2} \cdot 2^{x}$.
(c) $\frac{d}{d z}[\sin (z) \cos (z)]$. Use the trig identity $\cos ^{2}(z)-\sin ^{2}(z)=\cos (2 z)$ to simplify your
answer.

