1) (32 points, 2 pages) Compute $d y / d x$ in each of these situations. You do not need to simplify:
a) $y=x^{3}+2 x^{2}-14 x+32$
$y^{\prime}=3 x^{2}+4 x-14$, by the $n x^{n-1}$ formula.
b) $y=\left(x^{3}+7\right)^{5}$.
$y^{\prime}=5\left(x^{3}+7\right)^{4}\left(3 x^{2}\right)=15 x^{2}\left(x^{3}+7\right)^{4}$ by the chain rule.
c) $y=\frac{\sin (x)}{x^{2}+1}$
$y^{\prime}=\frac{\left(x^{2}+1\right) \cos (x)-2 x \sin (x)}{\left(x^{2}+1\right)^{2}}$ by the quotient rule.
d) $y=\ln \left(\sin \left(x^{2}\right)\right)$
$y^{\prime}=\frac{2 x \cos \left(x^{2}\right)}{\sin \left(x^{2}\right)}$ by the chain rule applied twice. Once to $\ln (u)$ and once to $\sin (u)$.
e) $y=e^{x} \tan ^{-1}(x)$
$y^{\prime}=e^{x} \tan ^{-1}(x)+\frac{e^{x}}{1+x^{2}}$ by the product rule.
f) $y=x^{\sin (x)}$

Use logarithmic differentiation. Since $\ln (y)=\sin (x) \ln (x)$, we have $y^{\prime} / y=$ $(\ln (y))^{\prime}=\cos (x) \ln (x)+\frac{\sin (x)}{x}$, so $y^{\prime}=x^{\sin (x)}\left(\cos (x) \ln (x)+\frac{\sin (x)}{x}\right)$.
g) $x y+e^{x}+\ln (y)=17$. (For this part, you can leave your answer in terms of both x and y)

Use implicit differentiation. $y+x y^{\prime}+e^{x}+y^{\prime} / y=0$, so $\left(x+\frac{1}{y}\right) y^{\prime}=-\left(e^{x}+y\right)$, so $y^{\prime}=\frac{-\left(e^{x}+y\right)}{x+(1 / y)}$.
h) $y=\int_{3}^{2 x} \sin \left(t^{2}\right) d t$.

This is the fundamental theorem of calculus (version 1) combined with the chain rule. If $u=2 x$, then $d y / d u=\sin \left(u^{2}\right)=\sin \left(4 x^{2}\right)$, so $d y / d x=$ $(d y / d u)(d u / d x)=2 \sin \left(4 x^{2}\right)$.
2) (8 points) Some values of the function differentiable $f(x)$ are listed in the following table.

x	$f(x)$
2.95	8.8050
2.96	8.8432
2.97	8.8818
2.98	8.9208
2.99	8.9602
3.00	9.0000
3.01	9.0402
3.02	9.0808
3.03	9.1218
3.04	9.1632
3.05	9.2050

a) Compute the average rate of change between $x=2.99$ and $x=3.04$.

$$
\Delta y / \Delta x=(f(3.04)-f(2.99)) / .05=.2030 / .05=4.06
$$

b) Estimate, as accurately as you can, the value of $f^{\prime}(3)$.

Add a couple more columns to the table:

x	$f(x)$	$f(x)-f(3)$	$(f(x)-f(3)) /(x-3)$
2.95	8.8050	-.195	3.90
2.96	8.8432	-.1568	3.92
2.97	8.8818	-.1172	3.94
2.98	8.9208	-.0792	3.96
2.99	8.9602	-.0398	3.98
3.00	9.0000	0	$? ? ?$
3.01	9.0402	.0402	4.02
3.02	9.0808	.0808	4.04
3.03	9.1218	.1218	4.06
3.04	9.1632	.1632	4.08
3.05	9.2050	.2050	4.10

The limit, as $x \rightarrow 3$, of $(f(x)-f(3)) /(x-3)$ sure looks like it's 4 , so we estimate that $f^{\prime}(3)=4$. (Those who used a single estimate using $h=.01$ or $h=-.01$ and got 3.98 or 4.02 get full credit, but 4 is more accurate.)
3) (10 points) Let $f(x)=10 x^{3}-74$.
a) Find the equation of the line tangent to the curve $y=f(x)$ at $(2,6)$.

Since $f^{\prime}(x)=30 x^{2}, f^{\prime}(2)=120$, so our tangent line is $y-6=120(x-2)$. You can expand this out to $y=120 x-234$, but it's a LOT simpler to work with $y=6+120(x-2)$.
b) Use this tangent line (or equivalently, a linear approximation) to estimate $f(2.1)$.

If $x=2.1$, then $6+120(x-2)=6+12=18$, so $f(2.1) \approx 18$. (In reality, it's around 18.61).
c) Use this tangent line (or equivalently, a linear approximation) to estimate a value of x for which $f(x)=0$. (Congratulations. You just computed the cube root of 7.4 by hand.)

If $6+120(x-2)=0$, then $(x-2)=-6 / 120=-.05$, so $x=1.95$. This calculation is the same thing as applying one step of Newton's method.
4) (12 points, 2 pages!) The position of a particle is $f(t)=t^{4}-6 t^{2}+8$. (Note that this factors as $\left(t^{2}-2\right)\left(t^{2}-4\right)$. Note also that t can be positive or negative; the domain of the function is the entire real line.)
a) Make a sign chart for f, indicating the values of t where $f(t)$ is positive, where $f(t)$ is negative, and where $f(t)=0$.

Since $f(t)=\left(t^{2}-2\right)\left(t^{2}-4\right), f(t)$ will be positive when $t^{2}<2$ or $t^{2}>4$, and negative when $2<t^{2}<4$. In other words, $f(t)$ is positive on $(-\infty,-2)$, negative on $(-2,-\sqrt{2})$, positive on $(-\sqrt{2}, \sqrt{2})$, negative on $(\sqrt{2}, 2)$, and positive on $(2, \infty)$, and equals zero at $t= \pm \sqrt{2}$ and $t= \pm 2$.
b) At what times is the particle moving forwards? (Either express your answer in interval notation or make a relevant sign chart.)

The velocity if $f^{\prime}(t)=4 t^{3}-12 t=4 t\left(t^{2}-3\right)$. The particle is moving forwards when $t>0$ and $t^{2}>3$ or when $t<0$ and $t^{2}<3$. In other words, it's moving forwards on the intervals $(\sqrt{3}, \infty)$ and $(-\sqrt{3}, 0)$.
c) At what times is the velocity increasing?

The acceleration is $f^{\prime \prime}(t)=12 t^{2}-12=12\left(t^{2}-1\right)$. The velocity is increasing when this is positive, namely when $t<-1$ or $t>1$.
d) Sketch the graph $y=f(t)$. Mark carefully the local maxima, the local minima, and the points of inflection.

The graph looks like a curvy W, and is sometimes called a "Mexican hat" function. There is a local maximum at the point $(0,8)$, local minima at $(\pm \sqrt{3},-1)$, and points of inflection at $(\pm 1,3)$, and crosses the x-axis at $x= \pm 2$ and $\pm \sqrt{2}$.
5) (8 points) Consider the function

$$
f(x)= \begin{cases}1+x & x \leq 0 \\ e^{x} & x>0\end{cases}
$$

a) Compute

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x}
$$

Since $f(x)=e^{x}$ for $x>0$, and since $f(0)=1$, this is $\lim _{x \rightarrow 0^{+}} \frac{e^{x}-1}{x}$, which is (by definition!) the derivative of e^{x} at $x=0$. This equals 1 . (You can also get the answer from L'Hôpital's rule).
b) Compute

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x}
$$

Since $f(x)=1+x$ for $x<0$, this is $\lim _{x \rightarrow 0^{-}} \frac{x}{x}=1$.
c) Is f differentiable at $x=0$? Explain why or why not. If f is differentiable, compute $f^{\prime}(0)$.

Yes, it's differentiable. Since the limits of $\frac{f(x)-f(0)}{x}$ from the two directions are the same, there is an overall limit, namely 1. By definition, $f^{\prime}(0)=$ $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=1$. Some people argued that $f(x)$ was differentiable since the limits of $f(x)$ from the two directions are the same (and equal $f(0)$). That only makes the function continuous, not differentiable.
6) (6 points) Consider the expression

$$
\lim _{N \rightarrow \infty}\left(\sum_{j=1}^{N} \frac{6}{N}\left(1+\frac{2 j}{N}\right)^{2}\right)
$$

a) Rewrite this expression as a definite integral.

There are several ways to write this as an integral. The simplest is $\int_{1}^{3} 3 x^{2} d x$. Taking $a=1$ and $b=3$, we have $\Delta x=2 / N, x_{j}=1+2 j / N$, and our sum is $\sum_{j=1}^{n} 3 x_{j}^{2} \Delta x$, whose limit is $\int_{1}^{3} 3 x^{2} d x$.

Note that $\left(1+\frac{2 j}{N}\right)$ ranges from $1+2 / N \approx 1$ to $1+2 N / N=3$, so if we're integrating something times x^{2}, the integral must be from 1 to 3 . However, there are other ways to write the integral. If we take $a=0$ and $b=2$, we get $\int_{0}^{2} 3(1+x)^{2} d x$. If we take $a=0$ and $b=1$, we get $\int_{0}^{1} 6(1+2 x)^{2} d x$. If we take $a=0$ and $b=6$, we get $\int_{0}^{6}\left(1+\frac{x}{3}\right)^{2} d x$. However you slice it, the quantity being squared goes from 1 to 3 .
b) Evaluate this integral (using the Fundamental Theorem of Calculus).

$$
\int_{1}^{3} 3 x^{2} d x=\left.x^{3}\right|_{1} ^{3}=3^{3}-1^{3}=26 .
$$

7) (8 pts) Cops and robbers.

A person is mugged at the corner of a north-south street and an east-west street, and calls for help. A little while later, at time $t=0$, the robber is 200 m east of the intersection, running east with a speed of $5 \mathrm{~m} / \mathrm{s}$. (m means "meter" and s means "second") At the same time, a cop is 500 m north of the intersection, running south at $5 \mathrm{~m} / \mathrm{s}$.
a) At what rate is the (straight-line) distance between the cop and the robber changing at $t=20$ seconds?

Let $x=200+5 t$ be the position of the robber (east of the intersection) and let $y=500-5 t$ be the position of the cop (north of the intersection). Note that $d x / d t=5$ is positive and $d y / d t=-5$ is negative, since the robber is running away from the intersection and the cop is running toward it. The distance r between them satisfies $r^{2}=x^{2}+y^{2}$, so

$$
2 r \frac{d r}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=10(x-y),
$$

so $d r / d t=5(x-y) / r$. At time $t=20$, we have $x=300$ and $y=400$, hence $r=500$, so $d r / d t=5(-100) / 500=-1 \mathrm{~m} / \mathrm{s}$.
b) At what time is the distance between the cop and the robber minimized? (You can restrict your attention to the interval $0 \leq t \leq 100$ seconds.)

Notice that r first decreases (when $x<y$) and then increases (when $x>y$), so the critical point (where $x=y$) must be a minimum. This occurs when $0=x-y=10 t-300$, so $t=30$. (At this time, $x=y=350$ and $r=350 \sqrt{2}$. You weren't actually asked for the minimum distance, but there it is.)
8. (8 points) Compute (with justification) the two limits
a)

$$
\lim _{x \rightarrow 1} \frac{\sin (\pi x)}{\ln (x)}
$$

This is a $0 / 0$ indeterminate form, so use L'Hôpital's rule:
$\lim _{x \rightarrow 1} \frac{\sin (\pi x)}{\ln (x)}=\lim _{x \rightarrow 1} \frac{\pi \cos (\pi x)}{1 / x}=\frac{\pi \cos (\pi)}{1}=-\pi$.
b)

$$
\lim _{x \rightarrow \infty} \frac{\sin \left(x^{2}\right)}{x}
$$

This is not an indeterminate form, and L'Hôpital's rule does not apply. The numerator is oscillates between -1 and 1 , while the denominator gets bigger and bigger. The limit of the ratio is zero. (More precisely, $-1 / x \leq$ $\frac{\sin \left(x^{2}\right)}{x} \leq 1 / x$. Since $-1 / x$ and $1 / x$ both go to zero, the sandwich theorem says that $\sin \left(x^{2}\right) / x$ must also go to zero.)
9) (8 points) The acceleration of a particle is given by the function $a(t)=4 \cos (t)-6 t+6$.
a) At $t=0$, the velocity is $v(0)=1$. Find the velocity $v(t)$ as a function of time.

The velocity is the anti-derivative of the acceleration, so $v(t)=4 \sin (t)-$ $3 t^{2}+6 t+C$ for some constant C. Note that the anti-derivative of $4 \cos (t)$ is $4 \sin (t)$, not $2 \sin ^{2}(t)$! Plugging in $v(0)=1$ gives $C=1$, so $v(t)=4 \sin (t)-$ $3 t^{2}+6 t+1$.
b) Let $x(t)$ denote the position at time t. Compute $x(2)-x(0)$. (There is more than one way to do this, but there is only one right answer.)

We can do this either with anti-derivatives or with integrals. It's really all the same, thanks to the Fundamental Theorem of Calculus.

Using antiderivatives, we compute $x(t)=-4 \cos (t)-t^{3}+3 t^{2}+t+D$ for some unknown constant D. Computing $x(2)-x(0)$ we get $-4 \cos (2)-8+$ $12+2+D-(-4+D)=10-4 \cos (2)$. The constant D has conveniently disappeared. If you prefer integrals, we compute $x(2)-x(0)=\int_{0}^{2} v(t) d t=$ $\left.\left(-4 \cos (t)-t^{3}+3 t^{2}+t\right)\right|_{0} ^{2}=10-4 \cos (2)$. When integrating, we don't have to worry about the constant D, since any anti-derivative will work for the FTC. A shocking number of people didn't remember that $\sin (0)=0$, $\cos (0)=1$, and that that $\cos (2)$ is a complicated number that isn't 0 or 1 ! $(\cos (2) \approx-0.416)$.

