M408N Second Midterm Exam Solutions, October 27, 2011

1) (48 points, 2 pages) Compute the derivatives of the following functions with respect to x. Except in part (e), you do not need to simplify.
a) $x^{2} \ln (x)$

Apply the product rule to get $2 x \ln (x)+x=x(1+2 \ln (x))$
b) $\frac{\tan ^{-1}(x)}{x^{2}+1}$

Apply the quotient rule to get

$$
\frac{\left(x^{2}+1\right) \frac{1}{x^{2}+1}-2 x \tan ^{-1}(x)}{\left(x^{2}+1\right)^{2}}=\frac{1-2 x \tan ^{-1}(x)}{\left(1+x^{2}\right)^{2}}
$$

c) $\sin ^{5}\left(\ln \left(e^{x}+7\right)\right)$.

Apply the chain rule several times in a row. The derivative is
$5 \sin ^{4}\left(\ln \left(e^{x}+7\right)\right) \frac{d}{d x}\left(\sin \left(\ln \left(e^{x}+7\right)\right)\right.$
$=5 \sin ^{4}\left(\ln \left(e^{x}+7\right)\right) \cos \left(\ln \left(e^{x}+7\right)\right) \frac{d}{d x}\left(\ln \left(e^{x}+7\right)\right)$
$=5 \sin ^{4}\left(\ln \left(e^{x}+7\right)\right) \cos \left(\ln \left(e^{x}+7\right)\right) e^{x} /\left(e^{x}+7\right)$.
d) $\frac{e^{3 x}}{x^{2}+\cos (5 x)}$

Apply the quotient rule and then the chain rule (to get the derivatives of $e^{3 x}$ and $\left.\cos (5 x)\right)$. The answer is

$$
\frac{3 e^{3 x}\left(x^{2}+\cos (5 x)\right)-e^{3 x}(2 x-5 \sin (5 x))}{\left(x^{2}+\cos (5 x)\right)^{2}}
$$

e) $\sin ^{-1}(\cos (x))$, with $0<x<\pi / 2$. Simplify your answer as much as possible!

There are two ways to do this. The first is to notice that $\sin ^{-1}(\cos (x))=$ $\frac{\pi}{2}-x$, whose derivative is -1 . The second is to apply the chain rule to get $\frac{1}{\sqrt{1-\cos ^{2}(x)}}(-\sin (x))=-\sin (x) / \sin (x)=-1$.
f) $x^{\left(x^{2}\right)}$

Use logarithmic differentiation. If $y=x^{x^{2}}$, then $\ln (y)=x^{2} \ln (x)$, so $y^{\prime} / y=(\ln (y))^{\prime}=(x+2 x \ln (x))$ (as in part (a)), so $y^{\prime}=y(\ln (y))^{\prime}=x^{x^{2}}(x+$ $2 x \ln (x))=x^{x^{2}+1}(1+2 \ln (x))$. Note: THERE IS NO POWER RULE for expressions of the form $f(x)^{g(x)}$! The power rule only applies to expressions like u^{n}, where n is a constant.
2) The curve $x^{2} \ln (y)+y e^{x-3}=1$ goes through the point $P=(3,1)$. Find the equation of the line that is tangent to the curve at P.

Taking a derivative of the equation with respect to x gives

$$
2 x \ln (y)+\frac{x^{2}}{y} y^{\prime}+y e^{x-3}+e^{x-3} y^{\prime}=0
$$

Solving for y^{\prime} gives

$$
y^{\prime}=\frac{-\left(2 x \ln (y)+y e^{x-3}\right)}{\frac{x^{2}}{y}+e^{x-3}}
$$

Plugging in $x=3$ and $y=1$ gives $y^{\prime}=-1 / 10$. Since our tangent line has slope $-1 / 10$ and goes through $(3,1)$, its equation is $y-1=-(x-3) / 10$, or $y=\frac{-x}{10}+\frac{13}{10}$.
3) Estimate $\sqrt{628}$ and $\sqrt{623}$, each to within .01 . (Hint: Use the fact that $\sqrt{625}=25$.)

Let $f(x)=\sqrt{x}$, so $f^{\prime}(x)=1 / 2 \sqrt{x}$. Take $a=625$, so $f(a)=25$ and $f^{\prime}(a)=1 / 50$. Our tangent line is then $y-25=(x-625) / 50$, or $y=25+(x-$ $625) / 50$. At $x=628$ this gives $y=25.06$, and at $x=623$ it gives $y=24.96$. Not only are these estimates of $\sqrt{628}$ and $\sqrt{623}$ accurate to .01 , they are good to within 0.0001 , since $\sqrt{628} \approx 25.059928$ and $\sqrt{623} \approx 24.95996$.
4) A F-15 fighter jet is flying 1 km above the ground, and will soon pass directly overhead. It is flying due east at $0.6 \mathrm{~km} / \mathrm{sec}$. Where will it be when the distance between you and the plane is decreasing at $0.3 \mathrm{~km} / \mathrm{sec}$? That is, how far west of you will the plane be? (Obviously it will still be a kilometer above the ground.) [In case you're interested, here's the physics behind the problem. A jet flying faster than sound generates a sonic boom in your direction when it is approaching you at exactly the speed of sound, which is a little over $0.3 \mathrm{~km} / \mathrm{s}$. If a jet flies by at Mach 2, it will take a few seconds for the boom to reach you, but the boom will come from exactly the spot that you calculate in this problem.]

Let x be the horizontal distance to the jet, and let r be the diagonal distance, both measured in kilometers. We then have $r^{2}=x^{2}+1$, so $2 r(d r / d t)=2 x(d x / d t)$. Since $d r / d t=-0.3$ and $d x / d t=-0.6$, we must have $r=2 x$. But then $(2 x)^{2}=1+x^{2}$, so $3 x^{2}=1$, so $x=\sqrt{3} / 3$ and the jet is $\sqrt{3} / 3$ kilometers to the west. (The direction of the jet is 30 degrees to the west of vertical.)
5) Find all the critical points of the function $f(x)=x^{2} /\left(1+x^{4}\right)$. Then use these critical points to find the (global) maximum and minimum values of $f(x)$ on the interval $[-10,10]$.
$f^{\prime}(x)=\left[\left(1+x^{4}\right) 2 x-x^{2}\left(4 x^{3}\right)\right] /\left(1+x^{4}\right)^{2}=2 x\left(1-x^{4}\right) /\left(1+x^{4}\right)^{2}$. This always exists, and is zero when $x=0$ or $x= \pm 1$.

Since $f(0)=0, f(1)=f(-1)=1 / 2$ and $f(10)=f(-10)=100 / 10,001$, the maximum value is $1 / 2$, and is achieved at $x= \pm 1$, and the minimum value is 0 and is achieved at $x=0$.
6) (12 points) The position of a particle at time t is given by the function $f(t)=t^{3}-3 t$. (a) What are the position, velocity and acceleration of the particle at time $t=-2$?

The velocity function is $f^{\prime}(t)=3 t^{2}-3$ and the acceleration is $f^{\prime \prime}(t)=6 t$. Plugging in $t=-2$ we get position $=-2$, velocity $=9$ and acceleration $=$ -12 .
b) Indicate all times when the particle is moving forwards (e.g., your answer might be something like "when $t>-7$ ").

The particle is moving forwards when $|t|>1$, which is when $f^{\prime}(t)>0$. Between $t=-1$ and $t=1$, the particle is moving backwards.
c) Indicate all times when the particle is accelerating forwards.

The particle is accelerating forwards when $t>0$, since then $f^{\prime \prime}(t)=6 t>$ 0.

