1) (15 pts) (Inverse) trig functions
a) Draw a right triangle where one of the angles is $\tan ^{-1}(2)$. (There are many possible answers, all with the same shape but different overall size. Pick your favorite.) Label the lengths of all three sides and then compute $\sin \left(\tan ^{-1}(2)\right)$.
b) Compute $\cos (5 \pi / 6)$.
c) Draw a right triangle where one of the angles is $\sec ^{-1}(2)$. Label the lengths of all three sides and then compute $\tan \left(\sec ^{-1}(2)\right)$.
2. (20 points) Compute the following limits:
a) $\lim _{x \rightarrow 4} \frac{x^{2}-5 x+4}{x^{2}-16}$.
b) $\lim _{x \rightarrow \infty} \frac{x^{2}-5 x+e^{-x}}{x^{2}-16+3 e^{-x}}$.
c) $\lim _{x \rightarrow-\infty} \frac{x^{2}-5 x+e^{-x}}{x^{2}-16+3 e^{-x}}$.
d) $\lim _{x \rightarrow 0+} \frac{\tan (3 x)}{4 x}$.
3. (15 pts) Continuity and discontinuities.
a) Where does the function $f(x)=\frac{x^{2}-9}{x^{2}-4 x+3}$ fail to be continuous?
b) For each point where $f(x)$ isn't continuous, identify the kind of discontinuity.
4. (15 pts) Definition of derivative.

Consider the limit

$$
\lim _{h \rightarrow 0} \frac{(5+h) e^{5+h}-5 e^{5}}{h}
$$

a) Find a function $f(x)$ and a point a such that this limit equals $f^{\prime}(a)$.
b) Using what you know about taking derivatives, evaluate the limit.
5. (20 pts) Compute the derivatives of the following functions with respect to x.
a) $(\sin (x)+3)\left(e^{x}+x^{2}\right)$.
b) $\frac{\sin (x)+3}{e^{x}+x^{2}}$.
c) $\sin \left(e^{5 x}+x^{2}\right)$.
d) $\sin ^{2}(x)+\cos ^{2}(x)$.
6. (15 pts) Implicit differentiation.

Find the equation of the line tangent to the curve $x^{2}+y^{3}=9$ at the point $(1,2)$.

