
M340L Final Exam Solutions, May 7, 2003

1. Let A =


1 0 −1 2 3
1 1 6 5 4
2 1 5 7 8
5 2 9 16 16

 and let b =


10
13
25
54

. The augmented

matrix [Ab] is row-equivalent to


1 0 −1 2 0 4
0 1 7 3 0 1
0 0 0 0 1 2
0 0 0 0 0 0

.

a) Find all solutions to Ax = b. Express your answers in parametric form.
The row-reduced equations read x1 = 4 + x3 − 2x4, x2 = 1− 7x3 − 3x4,

x5 = 2, while x3 and x4 are free (x3 = x3 and x4 = x4). Thus

x =


4
1
0
0
2

 + s


1
−7
1
0
0

 + t


−2
−3
0
1
0

 .

b) Find a basis for the column space of A.
The first, 2nd and 5th columns are pivot columns, so our basis is


1
1
2
5

 ,


0
1
1
2

 ,


3
4
8
16




c) Find a basis for the null space of A.
This is the same as part (a), only with zero on the right hand side. Our

basis is


1
−7
1
0
0

 ,


−2
−3
0
1
0

.

d) Find a basis for (Col(AT ))⊥.
This is the same thing as the null space of A, so the answer is the same

as (c).
2. For each of these matrices, (i) find the determinant, (ii) state whether
the matrix is invertible, and (iii) either find the inverse of the matrix (if it
is invertible) or find a nonzero solution to Ax = 0 (if it isn’t).

a)
(

9 6
12 8

)
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The determinant is 0, the matrix is NOT invertible, and a nontrivial

solution to Ax = 0 is
(

2
−3

)
.

b)


1 2 −3 9
0 1 3 0
0 3 10 0
0 3 6 −1

.

The determinant is -1 (expand about the first column, and then about
the last column), the matrix is invertible, and the inverse (obtained by row-

reducting [AI]) is


1 −137 36 9
0 10 −3 0
0 −3 1 0
0 12 −3 −1

.

3. In the space P2 of quadratic polynomials, let E = {1, t, t2} be the standard
basis, and let B = {1 + t2, 2t + t2, 1 + 3t + 2t2} be an alternate basis
a) Find the change-of-basis matrix PEB that converts from coordinates in
the B basis to coordinates in the E basis.

PEB = ([b1]E [b2]E [b3]E) =

 1 0 1
0 2 3
1 1 2


b) Find the change-of-basis matrix PBE that converts from coordinates in
the E basis to coordinates in the B basis.

PBE = (PEB)−1 =

−1 −1 2
−3 −1 3
2 1 −2

 (computed by row-reducing [PEBI].)

c) Compute the coordinates, in the B basis, of the following four vectors:
3 + 4t− t2, 5− t + 2t2, 1, 1 + 3t + 2t2

Just multiply PBE by the coordinates of these vectors in the E basis to

get:

 −9
−16
12

 ,

 0
−8
5

 ,

−1
−3
2

 ,

 0
0
1



4. Let T : P2 → R4 be defined by T (p) =


p(1)
p′(1)
p(2)
p′(2)

, where p′ is the derivative

of p with respect to t. Find the matrix of this linear transformation relative
to the standard basis.

Since T (1) =


1
0
1
0

, T (t) =


1
1
2
1

 and T (t2) =


1
2
4
4

, the matrix is
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1 1 1
0 1 2
1 2 4
0 1 4

.

5. a) Find a 3× 3 matrix A whose eigenvalues are 1, 0 and −1, and whose

corresponding eigenvectors are

 1
1
1

,

 1
2
3

 and

 1
2
4

.

A = PDP−1 where P =

 1 1 1
1 2 2
1 3 4

 and D =

 1 0 0
0 0 0
0 0 −1

. Comput-

ing P−1 =

 2 −1 0
−2 3 −1
1 −2 1

 and multiplying gives A =

 1 1 = 1
0 3 −2
−2 7 −4

.

b) Compute A37.
A37 = PD37P−1. But D37 is easily seen to equal D, so A37 = PDP−1 =

A =

 1 1 = 1
0 3 −2
−2 7 −4

.

6. In this problem, we model the spread of an epidemic. Let S(k) be the
number of sick people in week k, and let I(k) be the number of people
who are infected, but not yet sick. Each week, a sick person will infect 6
others, while an infected person will become sick. (In our model, nobody
ever recovers or dies). That is,

S(k + 1) = S(k) + I(k)
I(k + 1) = 6S(k)

Letting x(k) =
(

S(k)
I(k)

)
, this boils down to x(k + 1) =

(
1 1
6 0

)
x(k).

a) Find the eigenvalues and corresponding eigenvectors of the matrix.

Eigenvalues are λ1 = 3 and λ2 = −2 and eigenvectors are b1 =
(

1
2

)
and

b2 =
(

1
−3

)
(or any nonzero multiple of these choices).

b) In the long run, what will be the ratio of sick to infected (but not yet
sick) people?

In the long run, the coefficient of b1 dominates, so the ratio of sick to
infected approaches that of b1, namely 1:2.
c) If there are 3 sick people and 1 infected person in week zero, how many
sick and infected people will there be in week k?
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x(0) =
(

3
1

)
= 2b1+b2, so x(k) = 2(3k)b1+(−2)kb2 =

(
2 · 3k + (−2)k

4 · 3k − 3(−2)k

)
.

7. Let v1 =


1
1
1
1

, v2 =


1
−2
0
1

, and b =


1
2
4
−3

. Let V = Span{v1, v2}.

a) Compute PV b.
Since v1 and v2 are orthogonal, PV b = Pv1b + Pb2v = v1·b

v1·v1
v1 + v2·b

v2·v2
v2 =

4
4v1 − 6

6v2 =


0
3
1
0

.

b) Find the distance from b to the plane V .
The distance is |b− PV b| = |(1,−1, 3,−3)T | = √

20 = 2
√

5.

c) Find a least-squares solution to


1 1
1 −2
1 0
1 1

 x = b.

We have already seen that the projection of b is 1v1 + (−1)v2, so our

least-squares solution is
(

1
−1

)
. You can also get this answer by solving

AT Ax = AT b.

8. a) Find an orthogonal basis for the column space of


1 3 6
0 1 5
1 1 0
0 −1 3

.

v1 = x1 =


1
0
1
0



v2 = x2 − x2 · v1

v1 · v1
v1 =


3
1
1
−1

− 2


1
0
1
0

 =


1
1
−1
−1



v3 = x3 − x3 · v1

v1 · v1
v1 − x3 · v2

v2 · v2
v2 = x3 − 3v1 − 2v2 =


1
3
−1
5
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b) Find the projection of


3
2
3
6

 onto this space.

The vectors v1, v2, v3 give an orthogonal basis for this column space,
so Pcol(A) = Pv1 + Pv2 + Pv3 , and PCol(A)b = b·v1

v1·v1
v1 + b·v2

v2·v2
v2 + b·v3

v3·v3
v3 =

3v1 − v2 + v3 =


3
2
3
6

. The vector b was already IN the column space, so its

projection is itself.
9. True-False. Indicate whether each of these statements is true or false. If
a statement is sometimes true and sometimes false, write “false”. You do
NOT have to justify your answers. There is no penalty for wrong answers,
so go ahead and guess if you are unsure of your answer.
a) The equation Ax = b has a solution if, and only if, b is in the span of the
columns of A.

True.
b) The equation Ax = b has a solution if, and only if, the augmented matrix
[Ab] has a pivot position in each row.

False. It has a solution if there is NOT a pivot in the last COLUMN.
c) If the m×n matrix A has a pivot in each column, then the columns of A
are linearly independent.

True.
d) If the m × n matrix A has a pivot in each column, then the columns of
A spen Rm.

False. Having a pivot in each column implies the columns are linearly
independent. Having a pivot in each ROW implies that they span Rm.
e) Every linear transformation from Rn to Rm can be represented by an
m× n matrix.

True.
f) If A, B and C are matrices such that the product ABC makes sense, then
(ABC)T = CT BT AT .

True.
g) If the determinant of a square matrix A is zero, then A is invertible.

False. If the determinant is zero, the matrix is NOT invertible.
h) Given vectors v1, . . . , vp ∈ Rn, the set of all linear combinations of these
vectors is a subspace of Rn.

True. The span of several vectors is always a subspace.
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i) If two matrices are row-equivalent, then their column spaces have the
same dimension.

True.
j) The row space of a matrix has the same dimension as the column space.

True. Both dimensions equal the rank of the matrix.
k) R2 is a subspace of R3.

False. R2 does not sit inside R3.
l) The range of T (x) = Ax is the same as the column space of A.

True.
m) If H = Span{b1, . . . , bp}, then {b1, . . . , bp} is a basis for H.

False. They may not be linearly independent.
n) The dimension of the null space of a matrix is the number of free variables
in the equation Ax = 0.

True.
o) If A is a 5× 3 matrix, then the null space of A is at least 2-dimensional.

False. This would be true for a 3× 5 matrix, not a 5× 3.
p) A number c is an eigenvalue of A if and only if det(A− cI) = 0.

True.
q) If the characteristic polynomial of a 4 × 4 matrix A is pA(λ) = λ(λ −
1)(λ + 3)(λ− 15), then A is diagonalizable.

True. The eigenvalues are all distinct.
r) Every 2× 2 matrix has at least one eigenvalue, but it may be complex.

True.
s) If A = PDP−1, with D diagonal, then each column of P is an eigenvector
of A.

True.
t) If Ax = 0, then x is in (Col(A))⊥.

False. x is in (Col(AT ))⊥.
u) If two nonzero vectors are orthogonal, they are linearly independent.

True.
v) If two nonzero vectors are linearly independent, they are orthogonal.

False. (e.g., v = (1, 0)T and w = (1, 1)T .)
w) If y = z1 + z2, where z1 ∈ W and z2 ∈ W⊥, then PW y = z1.

True.
x) The equation Ax = b always has a least-squares solution, no matter what
A and b are.

True. Least-squares solutions always exist.
y) If b ∈ Col(A), then Ax = b has a unique least-squares solution.

False. Uniqueness has to do with the columns of A being linearly inde-
pendent.
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