Lie Groups Solutions, Problem Set \# 3

Section 2.2:
1: (a) If G is the group of invertible block-triangular matrices, then g is the vector space of all block-triangular matrices (with the sizes of the blocks fixed). It is easy to see that the exponential of a block-triangular is block-triangular, and that the derivative of a path in the block-triangulars is block-triangular.
(b) If you add the condition in G that the blocks are identity matrices, then g is the set of upper-block-triangular matrices, i.e. those with $a_{k}=0_{k} \in M_{n_{k}}$.
3: (a) The condition can be rewritten as $a^{t} f a=f$. Clearly, if $a \in G$, then $f=\left(a^{-1}\right)^{t} a^{t} f a a^{-1}=\left(a^{-1}\right)^{t} f a^{-1}$, so $a^{-1} \in G$. Likewise, if a and b are in G, then $(a b)^{t} f(a b)=b^{t} a^{t} f a b=b^{t}\left(a^{t} f a\right) b=b^{t} f b=f$, so $a b \in G$. As for the Lie algebra, taking the derivative of $a^{t} f a=f$ at $a=1$ gives $X^{t} f+f X=0$, so $g=\left\{X \in M \mid X^{t} f=-f X\right\}$.
(b) If $X=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, then $X^{t} f+f X=\left(\begin{array}{ll}A^{t} & C^{t} \\ B^{t} & D^{t}\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)++\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)=$ $\left(\begin{array}{cc}C-C^{t} & A^{t}+D \\ -A-D^{t} & B-B^{t}\end{array}\right)$, so we must have B and C symmetric and $D=-A^{t}$. That is, the most general Lie algebra element is of the form $\left(\begin{array}{cc}A & B \\ C & -A^{t}\end{array}\right)$, with B and C symmetric and A arbitrary.

As for the group, we want $a=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ with $A^{t} C=C^{t} A$ (i.e., $A^{t} C$ symmetric), $B^{t} D=D^{t} B$, and $A^{t} D-C^{t} B=1$. For $m=1$, this is exactly $S L(2, R)$. For $m>1$, this is more complicated.

4: (a) so(3) is simple. The only sub-algebras are either 1-dimensional (with a trivial bracket), or the full 3-dimensional algebra.
(b) Even though $s l(2, C)$ is the complexification of $s o(3)$, the set of available Lie sub-algebras is actually MORE than the complexification of the answer to (a). There exist 2-dimensional subalgebras, all of which are conjugate to the span of H and X_{+}. To see that these are the ONLY 2-dimensional subalgebras, we argue as follows:

Suppose we have a basis for a 2-D subalgebra, spanned by matrices A and B. Then $[A, B]$ is a linear combination of A and B. By calling this combination our second basis vector and rescaling our vectors, we can assume that $[A, B]=2 B$. If B is semi-simple and has eigenvalues $\pm \lambda$, then $\exp (2 \pi B / \lambda)=1$, so $A d(\exp (2 \pi B / \lambda)) A=A$. But by Baker-Campbell-Haussdorff, $A d(\exp (B t) A=A+2 B t$. So B must not be semi-simple, which implies it must be nilpotent, hence conjugate to X_{+}. The equation $[A, B]=2 B$
then implies that $A=H$ plus a multiple of B, so our algebra is spanned by H and X_{+}.
8: (a) The group law is trivial, and the Lie algebra is $\{X \in M \mid X c=c X\}$, or equivalently $\{X \in M \mid[X, c]=0\}$.
(b) If c is diagonal, then it is NOT true that X has to be diagonal. That's only true if the eigenvalues of c are all different. If c has eigenvalue λ_{1} repeated n_{1} times, then λ_{2} repeated n_{2} times, etc, then X must be block-diagonal, with the first $n_{1} \times n_{1}$ block arbitrary, the second $n_{2} \times n_{2}$ block arbitrary, etc.

Section 2.3:

9: This is part of Theorem 1 of section 2.6, and a proof can be found on page 78. For completeness, however, I'll reprise the argument here.

Let $g(t)=f(\exp (t X))$. Then $g(0)=1$ and $g^{\prime}(t)=d\left(\left.f(\exp ((t+s) X) / d x)\right|_{s=0}=\right.$ $d(\exp (t X) \exp (s X)) /\left.d s\right|_{s=0}=g(t) \phi(X)$. But the solution to this differential equation is $\exp (t \phi(X))$ satisfies, so $f(\exp (t X))=\exp (t \phi(X))$. Finally, set $t=1$.

10: (a) This was essentially done in the proof of Theorem 3. We constructed the analytic map $f(X, Y)=\exp (X)(1+Y)$ from M to M, and noted that by the inverse function theorem it had an analytic local inverse near 1. Since the leaves of G were $V=$ constant (with V denoting the function in the proof, NOT the open ball in \mathbf{R}^{N}), and $G \cup U$ is C^{1}-path-connected, this means that every point in $G \cup U$ has $V=0$, and hence maps to a ball around zero in $\mathbf{R}^{m} \times 0 \subset \mathbf{R}^{N}$.
(b) Part (a) showed that $1 \in G$ has a neighborhood in G which is the restriction of an open set (in M) to G. Multiplying on the left (or right) by a then gives us a neighborhood of $a \in G$ with the same property. This shows that the intrinsic topology of G is the same as the topology that G inherits from M.
(c) First work locally, then glue. Locally, if we have a C^{k} function on G, then it gives a C^{k} function on \mathbf{R}^{m}, which, when multiplied by a smooth function of the remaining $N-m$ coordinates, gives a C^{k} function on \mathbf{R}^{N}, hence on a neighborhood of a in M. Now glue these local functions together using a smooth partition-of-unity of M. This shows that any C^{k} function on G can be extended to a C^{k} function on M. The fact that the restriction of a C^{k} function on M to G is C^{k} is trivial.

