Lie Groups Solutions, Problem Set # 3

Section 2.2:

1: (a) If G is the group of invertible block-triangular matrices, then g is the vector space of all block-triangular matrices (with the sizes of the blocks fixed). It is easy to see that the exponential of a block-triangular is block-triangular, and that the derivative of a path in the block-triangulars is block-triangular.

(b) If you add the condition in G that the blocks are identity matrices, then g is the set of upper-block-triangular matrices, i.e. those with $a_k = 0_k \in M_{n_k}$.

3: (a) The condition can be rewritten as $a^t fa = f$. Clearly, if $a \in G$, then $f = (a^{-1})^t a^t faa^{-1} = (a^{-1})^t fa^{-1}$, so $a^{-1} \in G$. Likewise, if a and b are in G, then $(ab)^t f(ab) = b^t a^t fab = b^t (a^t fa)b = b^t fb = f$, so $ab \in G$. As for the Lie algebra, taking the derivative of $a^t fa = f$ at a = 1 gives $X^t f + fX = 0$, so $g = \{X \in M | X^t f = -fX\}$.

(b) If
$$X = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
, then $X^t f + f X = \begin{pmatrix} A^t & C^t \\ B^t & D^t \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + + \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} C - C^t & A^t + D \\ -A - D^t & B - B^t \end{pmatrix}$, so we must have B and C symmetric and $D = -A^t$. That

is, the most general Lie algebra element is of the form $\begin{pmatrix} A & B \\ C & -A^t \end{pmatrix}$, with B and C symmetric and A arbitrary.

As for the group, we want $a = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with $A^t C = C^t A$ (i.e., $A^t C$ symmetric), $B^t D = D^t B$, and $A^t D - C^t B = 1$. For m = 1, this is exactly SL(2, R). For m > 1, this is more complicated.

4: (a) so(3) is simple. The only sub-algebras are either 1-dimensional (with a trivial bracket), or the full 3-dimensional algebra.

(b) Even though sl(2, C) is the complexification of so(3), the set of available Lie sub-algebras is actually MORE than the complexification of the answer to (a). There exist 2-dimensional subalgebras, all of which are conjugate to the span of H and X_+ . To see that these are the ONLY 2-dimensional subalgebras, we argue as follows:

Suppose we have a basis for a 2-D subalgebra, spanned by matrices A and B. Then [A, B] is a linear combination of A and B. By calling this combination our second basis vector and rescaling our vectors, we can assume that [A, B] = 2B. If B is semi-simple and has eigenvalues $\pm \lambda$, then $\exp(2\pi B/\lambda) = 1$, so $Ad(\exp(2\pi B/\lambda))A = A$. But by Baker-Campbell-Haussdorff, $Ad(\exp(Bt)A = A + 2Bt$. So B must not be semi-simple, which implies it must be nilpotent, hence conjugate to X_+ . The equation [A, B] = 2B

then implies that A = H plus a multiple of B, so our algebra is spanned by H and X_+ .

8: (a) The group law is trivial, and the Lie algebra is $\{X \in M | Xc = cX\}$, or equivalently $\{X \in M | [X, c] = 0\}$.

(b) If c is diagonal, then it is NOT true that X has to be diagonal. That's only true if the eigenvalues of c are all different. If c has eigenvalue λ_1 repeated n_1 times, then λ_2 repeated n_2 times, etc, then X must be block-diagonal, with the first $n_1 \times n_1$ block arbitrary, the second $n_2 \times n_2$ block arbitrary, etc.

Section 2.3:

9: This is part of Theorem 1 of section 2.6, and a proof can be found on page 78. For completeness, however, I'll reprise the argument here.

Let $g(t) = f(\exp(tX))$. Then g(0) = 1 and $g'(t) = d(f(\exp((t+s)X)/dx)|_{s=0} = d(\exp(tX)\exp(sX))/ds|_{s=0} = g(t)\phi(X)$. But the solution to this differential equation is $\exp(t\phi(X))$ satisfies, so $f(\exp(tX)) = \exp(t\phi(X))$. Finally, set t = 1.

10: (a) This was essentially done in the proof of Theorem 3. We constructed the analytic map $f(X, Y) = \exp(X)(1+Y)$ from M to M, and noted that by the inverse function theorem it had an analytic local inverse near 1. Since the leaves of G were V = constant (with V denoting the function in the proof, NOT the open ball in \mathbb{R}^N), and $G \cup U$ is C^1 -path-connected, this means that every point in $G \cup U$ has V = 0, and hence maps to a ball around zero in $\mathbb{R}^m \times 0 \subset \mathbb{R}^N$.

(b) Part (a) showed that $1 \in G$ has a neighborhood in G which is the restriction of an open set (in M) to G. Multiplying on the left (or right) by a then gives us a neighborhood of $a \in G$ with the same property. This shows that the intrinsic topology of G is the same as the topology that G inherits from M.

(c) First work locally, then glue. Locally, if we have a C^k function on G, then it gives a C^k function on \mathbf{R}^m , which, when multiplied by a smooth function of the remaining N - m coordinates, gives a C^k function on \mathbf{R}^N , hence on a neighborhood of a in M. Now glue these local functions together using a smooth partition-of-unity of M. This shows that any C^k function on G can be extended to a C^k function on M. The fact that the restriction of a C^k function on M to G is C^k is trivial.