
Lie Groups Solutions, Problem Set # 4

Section 2.5:

2: If F is g−stable, then Xv ∈ F for all X ∈ g, v ∈ F . Likewise, X2v = X(Xv) ∈ F ,
and by induction Xnv ∈ F . Since F is a vector space, exp(X)v =

∑

Xnv/n! ∈ F ,
so exp(g) sends F to itself. Thus the group generated by exp(g) sends F to itself.
Since G is connected, that is all of G.

Conversely, if F is G-stable and X ∈ g, then exp(tX)v ∈ F for all v ∈ F . Taking
a derivative with respect to t at t = 0 means that Xv ∈ F .

5: SO(3) and SU(2) are NOT complex, nor are O(3) or SL(2, R) or the Euclidean
group acting on R2. (Any complex group must have an even real dimension, so these
3-dimensional examples are easily eliminated). However, SL(2, C) is complex, as is
SL(n,C), and as is GL(n,C). The triangle groups of Example 6 are complex (if E is
a complex vector space) as is the group of affine transformations when E is complex.
Finally, the direct product of two complex groups is complex.

7: (a) Any path through the origin in G can be written uniquely as the product
of a path in M and a path in N : γ(t) = α(t)β(t), and at t = 0 we have dγ/dt =
dα/dt + dβ/dt. Thus g = m + n. Since M ∩N = 1, m∩n = 0, so g = m⊕n. Since
M is a subgroup, m is a sub-algebra. Since N is a normal subgroup, n is an ideal.

(b) By Baker-Campbell-Haussdorff, exp(−X) exp(X +Y ) = exp(Z), with Z given
by a sum of brackets. Since n is an ideal, all terms of the brackets are in n, so Z ∈ n,
and we can define A(X)Y = Z. Note the expression exp A(X)Y should be read as
exp(A(X)Y ), and not as (exp A(X))Y .

(c) First note that, by Dynkin’s formula, exp(X) exp(tY ) = exp(W (t)), where
W (t) − X ∈ n, by the same argument as above. When N is Abelian, we re-do
the derivation of Dynkin’s formula as follows: Let exp(W (t)) = exp(X) exp(tY ).
Then deW /dt = eW Y . However, deW /dt = eW [(1 − exp(−adW ))/ad(W )]dW/dt, so
dW/dt = [(1 − exp(−adW ))/ad(W )]−1Y . However, acting on n, ad(W ) = ad(X),
since n is Abelian. Thus dW/dt = A(X)−1Y , so W (1) = W (0) + A(X)−1Y =
X + A(X)−1Y . That is, we have proven that exp(X) exp(Y ) = exp(X + A(X)−1Y ).
Now, replacing Y with A(X)Y , we get exp(X) exp(A(X)Y ) = exp(X + Y ).

(d) The affine group is the set of all matrices

(

a b
0 1

)

with a invertible and b ∈ E.

This is (uniquely) factored as

(

a 0
0 1

) (

1 a−1b
0 1

)

.

11: Recall that we have an inner product on g, namely 〈X|Y 〉 = Tr(X∗Y ). Relative to
this inner product, (ad(Z))∗ = ad(Z∗), where on both sides the superscript ∗ means



adjoint. This is easily checked: 〈X|ad(Z)Y 〉 = Tr(X∗(ZY − Y Z)) = Tr((X∗Z −
ZX∗)Y ) = 〈ad(Z∗)X|Y 〉.

(a) Since Z is self-adjoint, ad(Z) is self adjoint, hence diagonalizable with real
eigenvalues, so g is the direct sum of eigenspaces with real eigenvalues.

(b) If X ∈ gλ and Y ∈ gµ, then by Jacobi, [Z, [X,Y ]] = [[Z,X], Y ] + [X, [Z, Y ]] =
[λX, Y ] + [X,µY ] = (λ + µ)[X,Y ].

(c) If X ∈ gλ, then [Z,X∗] = ZX∗ − X∗Z = (−Z∗X + XZ∗)∗ = −[Z∗, X]∗ =
−[Z,X]∗ = −λX∗.

(d) The fact that q is a subalgebra follows from (b). The fact that k is a sub-
algebra comes from the fact that [X,Y ]∗ = −[X∗, Y ∗]. To see that k + q = g (not
necessarily direct sum!), we decompose an arbitrary element of g into a k piece and
a q piece. By (a), we can assume with loss of generality that X ∈ gλ. If λ ≥ 0, then
X ∈ q. If λ < 0, then X = (X − X∗) + X∗, with X − X∗ ∈ k and X∗ ∈ q.

(e) (This is closely related to polar decomposition.) To see that L(K) = k, note
that the derivative of the equation k(t)∗k(t) = 1 at t = 0 is X∗ + X = 0, where
X = dk/dt. Thus all elements of L(K) are anti-hermitian. Likewise, the exponential
of any anti-hermitian elements of g are both unitary and in G, hence in K. It’s
obvious that exp(q) ⊂ NG(q), and hence that q ⊂ L(Q). Conversely, if Y ∈ L(Q),
then exp(Y t) ∈ Q, so exp(Y t)X exp(−Y t) ∈ q for all X ∈ q, so [Y,X] ∈ q. But
Z ∈ q, so [Y, Z] ∈ q. But this means that Y ∈ q. To show that G = KQ, it suffices
by problem 10 to show that KQ is closed. So suppose that we have a sequence
kjqj that converges (in G). Since K is compact, there is a subsequence such that kj

converges. But if kj and kjqj both converge, then so does k∗

j kjqj = qj, and we have
that lim kjqj = lim kj lim qj ∈ KQ.

12: K = SO(2), and Q is the group of upper-triangular matrices with determinant
1. (Called “B” in Lemma 3B of section 2.1).

Section 2.6:

For these problems, note that the adjoint action of a group on its Lie algebra
preserves a bilinear form on the Lie algebra, namely 〈X|Y 〉 = −Tr(XY ). Call this
form K (for Killing). The adjoint action Ad gives a homomorphism from G to Aut(K).
In each example it is easy to see that the infinitesimal action ad is 1–1. Since the
groups have the same dimension (in these examples), this induces a covering.

6: Define an action of SL(2, C) on C3 as follows. First identify C3 with the Lie
algebra sl(2, C), and then take the adjoint action of SL(2, C) on sl(2, C). That is,
if a ∈ SL(2, C) and X ∈ sl(2, C), let ρ(a)X = Ad(a)X = aXa−1. This is just the
complexification of the adjoint action of SU(2) on su(2), hence is the complexification



of the action of SO(3) on R3, hence is an action of SO(3, C) on C3.

7: (a) The bilinear form has signature (2,1), so the adjoint action gives a map
SL(2, R) → SO(2, 1). Since SL(2, R) is connected, the image is connected, hence
is in the identity component of SO(2, 1). Since it is 3-dimensional, it IS the identity
component.

(b) The Lie algebra is spanned by

(

i 0
0 −i

)

,

(

0 1
1 0

)

,

(

0 i
−i 0

)

, for which the

Killing form has signature (1,2). So the image of the double cover map is a connected
3-dimensional subgroup of SO(1, 2) = SO(2, 1), hence is the identity component.

(c) The Lie algebra of SL(2, R) is spanned by the anti-hermitian matrix X1 =
(

0 1
−1 0

)

and the Hermitian matrices X2 =

(

1 0
0 −1

)

and X3 =

(

0 1
1 0

)

, while

su(1, 1) is spanned by the anti-hermitian matrix Y1 =

(

i 0
0 −i

)

and the Hermitian

matrices Y2 =

(

0 1
1 0

)

and Y3 =

(

0 −i
i 0

)

. These are conjugate by P =

(

1 1
−i i

)

.

That is, Yk = PXkP
−1. This exponentiates to give SU(1, 1) = PSL(2, R)P−1.

8: (a) SL(2, C) × SL(2, C) acts on M2(C) = C4 (NOT C2 – that’s a typo) by
X → aXb−1. Since det(a) = det(b) = 1, this preserves the determinant of X,
which is a nondegenerate bilinear form on M2(C). Hence we have a homomorphism
SL(2, C) × SL(2, C) → SO(4, C). The groups have the same dimension, and the
kernel of Lf is empty, and SO(4, C) is connected, so this is a covering map. The
kernel is {(1, 1), (−1,−1)}, so it’s a double cover.

(b) Let SL(2, C) act on the hermitian 2 × 2 matrices (which are isomorphic to
R4, not to R3) by X → aXa∗. As before, this preserves the determinant, which is a
bilinear form. This bilinear form has signature (3,1), and the rest of the argument is
as in (a).


