Lie Groups Solutions, Problem Set \# 4

Section 2.5:

2: If F is \mathbf{g}-stable, then $X \mathbf{v} \in F$ for all $X \in \mathbf{g}, \mathbf{v} \in F$. Likewise, $X^{2} \mathbf{v}=X(X \mathbf{v}) \in F$, and by induction $X^{n} \mathbf{v} \in F$. Since F is a vector space, $\exp (X) \mathbf{v}=\sum X^{n} \mathbf{v} / n!\in F$, so $\exp (\mathbf{g})$ sends F to itself. Thus the group generated by $\exp (\mathbf{g})$ sends F to itself. Since G is connected, that is all of G.

Conversely, if F is G-stable and $X \in \mathbf{g}$, then $\exp (t X) \mathbf{v} \in F$ for all $\mathbf{v} \in F$. Taking a derivative with respect to t at $t=0$ means that $X \mathbf{v} \in F$.

5: $S O(3)$ and $S U(2)$ are NOT complex, nor are $O(3)$ or $S L(2, R)$ or the Euclidean group acting on R^{2}. (Any complex group must have an even real dimension, so these 3 -dimensional examples are easily eliminated). However, $S L(2, C)$ is complex, as is $S L(n, C)$, and as is $G L(n, C)$. The triangle groups of Example 6 are complex (if E is a complex vector space) as is the group of affine transformations when E is complex. Finally, the direct product of two complex groups is complex.

7: (a) Any path through the origin in G can be written uniquely as the product of a path in M and a path in $N: \gamma(t)=\alpha(t) \beta(t)$, and at $t=0$ we have $d \gamma / d t=$ $d \alpha / d t+d \beta / d t$. Thus $\mathbf{g}=\mathbf{m}+\mathbf{n}$. Since $M \cap N=1, \mathbf{m} \cap \mathbf{n}=0$, so $\mathbf{g}=\mathbf{m} \oplus \mathbf{n}$. Since M is a subgroup, \mathbf{m} is a sub-algebra. Since N is a normal subgroup, \mathbf{n} is an ideal.
(b) By Baker-Campbell-Haussdorff, $\exp (-X) \exp (X+Y)=\exp (Z)$, with Z given by a sum of brackets. Since \mathbf{n} is an ideal, all terms of the brackets are in \mathbf{n}, so $Z \in \mathbf{n}$, and we can define $A(X) Y=Z$. Note the expression $\exp A(X) Y$ should be read as $\exp (A(X) Y)$, and not as $(\exp A(X)) Y$.
(c) First note that, by Dynkin's formula, $\exp (X) \exp (t Y)=\exp (W(t))$, where $W(t)-X \in \mathbf{n}$, by the same argument as above. When N is Abelian, we re-do the derivation of Dynkin's formula as follows: Let $\exp (W(t))=\exp (X) \exp (t Y)$. Then $d e^{W} / d t=e^{W} Y$. However, $d e^{W} / d t=e^{W}[(1-\exp (-a d W)) / a d(W)] d W / d t$, so $d W / d t=[(1-\exp (-a d W)) / a d(W)]^{-1} Y$. However, acting on $\mathbf{n}, a d(W)=a d(X)$, since \mathbf{n} is Abelian. Thus $d W / d t=A(X)^{-1} Y$, so $W(1)=W(0)+A(X)^{-1} Y=$ $X+A(X)^{-1} Y$. That is, we have proven that $\exp (X) \exp (Y)=\exp \left(X+A(X)^{-1} Y\right)$. Now, replacing Y with $A(X) Y$, we get $\exp (X) \exp (A(X) Y)=\exp (X+Y)$.
(d) The affine group is the set of all matrices $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$ with a invertible and $b \in E$. This is (uniquely) factored as $\left(\begin{array}{cc}a & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}1 & a^{-1} b \\ 0 & 1\end{array}\right)$.
11: Recall that we have an inner product on \mathbf{g}, namely $\langle X \mid Y\rangle=\operatorname{Tr}\left(X^{*} Y\right)$. Relative to this inner product, $(a d(Z))^{*}=a d\left(Z^{*}\right)$, where on both sides the superscript * means
adjoint. This is easily checked: $\langle X \mid a d(Z) Y\rangle=\operatorname{Tr}\left(X^{*}(Z Y-Y Z)\right)=\operatorname{Tr}\left(\left(X^{*} Z-\right.\right.$ $\left.\left.Z X^{*}\right) Y\right)=\left\langle a d\left(Z^{*}\right) X \mid Y\right\rangle$.
(a) Since Z is self-adjoint, $a d(Z)$ is self adjoint, hence diagonalizable with real eigenvalues, so \mathbf{g} is the direct sum of eigenspaces with real eigenvalues.
(b) If $X \in \mathbf{g}_{\lambda}$ and $Y \in \mathbf{g}_{\mu}$, then by Jacobi, $[Z,[X, Y]]=[[Z, X], Y]+[X,[Z, Y]]=$ $[\lambda X, Y]+[X, \mu Y]=(\lambda+\mu)[X, Y]$.
(c) If $X \in \mathbf{g}_{\lambda}$, then $\left[Z, X^{*}\right]=Z X^{*}-X^{*} Z=\left(-Z^{*} X+X Z^{*}\right)^{*}=-\left[Z^{*}, X\right]^{*}=$ $-[Z, X]^{*}=-\lambda X^{*}$.
(d) The fact that \mathbf{q} is a subalgebra follows from (b). The fact that \mathbf{k} is a subalgebra comes from the fact that $[X, Y]^{*}=-\left[X^{*}, Y^{*}\right]$. To see that $\mathbf{k}+\mathbf{q}=\mathbf{g}$ (not necessarily direct sum!), we decompose an arbitrary element of \mathbf{g} into a \mathbf{k} piece and a \mathbf{q} piece. By (a), we can assume with loss of generality that $X \in \mathbf{g}_{\lambda}$. If $\lambda \geq 0$, then $X \in q$. If $\lambda<0$, then $X=\left(X-X^{*}\right)+X^{*}$, with $X-X^{*} \in \mathbf{k}$ and $X^{*} \in \mathbf{q}$.
(e) (This is closely related to polar decomposition.) To see that $L(K)=\mathbf{k}$, note that the derivative of the equation $k(t)^{*} k(t)=1$ at $t=0$ is $X^{*}+X=0$, where $X=d k / d t$. Thus all elements of $L(K)$ are anti-hermitian. Likewise, the exponential of any anti-hermitian elements of \mathbf{g} are both unitary and in G, hence in K. It's obvious that $\exp (\mathbf{q}) \subset N_{G}(\mathbf{q})$, and hence that $\mathbf{q} \subset L(Q)$. Conversely, if $Y \in L(Q)$, then $\exp (Y t) \in Q$, so $\exp (Y t) X \exp (-Y t) \in \mathbf{q}$ for all $X \in \mathbf{q}$, so $[Y, X] \in \mathbf{q}$. But $Z \in \mathbf{q}$, so $[Y, Z] \in \mathbf{q}$. But this means that $Y \in \mathbf{q}$. To show that $G=K Q$, it suffices by problem 10 to show that $K Q$ is closed. So suppose that we have a sequence $k_{j} q_{j}$ that converges (in G). Since K is compact, there is a subsequence such that k_{j} converges. But if k_{j} and $k_{j} q_{j}$ both converge, then so does $k_{j}^{*} k_{j} q_{j}=q_{j}$, and we have that $\lim k_{j} q_{j}=\lim k_{j} \lim q_{j} \in K Q$.
12: $K=S O(2)$, and Q is the group of upper-triangular matrices with determinant 1. (Called "B" in Lemma 3B of section 2.1).

Section 2.6:

For these problems, note that the adjoint action of a group on its Lie algebra preserves a bilinear form on the Lie algebra, namely $\langle X \mid Y\rangle=-\operatorname{Tr}(X Y)$. Call this form K (for Killing). The adjoint action Ad gives a homomorphism from G to $A u t(K)$. In each example it is easy to see that the infinitesimal action ad is $1-1$. Since the groups have the same dimension (in these examples), this induces a covering.

6: Define an action of $S L(2, C)$ on C^{3} as follows. First identify C^{3} with the Lie algebra $s l(2, C)$, and then take the adjoint action of $S L(2, C)$ on $s l(2, C)$. That is, if $a \in S L(2, C)$ and $X \in \operatorname{sl}(2, C)$, let $\rho(a) X=A d(a) X=a X a^{-1}$. This is just the complexification of the adjoint action of $S U(2)$ on $s u(2)$, hence is the complexification
of the action of $S O(3)$ on R^{3}, hence is an action of $S O(3, C)$ on C^{3}.
7: (a) The bilinear form has signature (2,1), so the adjoint action gives a map $S L(2, R) \rightarrow S O(2,1)$. Since $S L(2, R)$ is connected, the image is connected, hence is in the identity component of $S O(2,1)$. Since it is 3 -dimensional, it IS the identity component.
(b) The Lie algebra is spanned by $\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)$, for which the Killing form has signature $(1,2)$. So the image of the double cover map is a connected 3-dimensional subgroup of $S O(1,2)=S O(2,1)$, hence is the identity component.
(c) The Lie algebra of $S L(2, R)$ is spanned by the anti-hermitian matrix $X_{1}=$ $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and the Hermitian matrices $X_{2}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and $X_{3}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, while $s u(1,1)$ is spanned by the anti-hermitian matrix $Y_{1}=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$ and the Hermitian matrices $Y_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $Y_{3}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$. These are conjugate by $P=\left(\begin{array}{cc}1 & 1 \\ -i & i\end{array}\right)$. That is, $Y_{k}=P X_{k} P^{-1}$. This exponentiates to give $S U(1,1)=P S L(2, R) P^{-1}$.
8: (a) $S L(2, C) \times S L(2, C)$ acts on $M_{2}(C)=C^{4}$ (NOT C^{2} - that's a typo) by $X \rightarrow a X^{-1}$. Since $\operatorname{det}(a)=\operatorname{det}(b)=1$, this preserves the determinant of X, which is a nondegenerate bilinear form on $M_{2}(C)$. Hence we have a homomorphism $S L(2, C) \times S L(2, C) \rightarrow S O(4, C)$. The groups have the same dimension, and the kernel of $L f$ is empty, and $S O(4, C)$ is connected, so this is a covering map. The kernel is $\{(1,1),(-1,-1)\}$, so it's a double cover.
(b) Let $S L(2, C)$ act on the hermitian 2×2 matrices (which are isomorphic to R^{4}, not to R^{3}) by $X \rightarrow a X a^{*}$. As before, this preserves the determinant, which is a bilinear form. This bilinear form has signature (3,1), and the rest of the argument is as in (a).

