Lie Groups Solutions, Problem Set \# 7
 Section 4.2:

6: (a) A linear transformation $M \in G L(E)$ sends subspaces of E to subspaces of E. It is clear that this action is transitive on $G r_{m}(E)$, making $G r_{m}(E)$ a homogeneous space for $G L(E)$. The only question is what the stabilizer of a a point in $G r_{m}(E)$ is. Let $P_{0} \in G r_{m}(E)$ be the subspace spanned by the first m (standard) basis vectors. A matrix that sends P_{0} to itself must send each of these basis vectors to a vector in P_{0}. It can send the remaining $n-m$ standard basis vectors to anything (as long as the matrix is invertible). That is, the matrix must take the form $\left(\begin{array}{cc}* & * \\ 0 & *\end{array}\right)$.

Now, if $P \in G r_{m}(E)$ is a different subspace, then the stabilizer of P is conjugate to the stabilizer of P_{0} by a matrix that sends P_{0} to P. But that's just a change-of-basis matrix to a new basis whose first m vectors are a basis for P. (BTW, this SHOWS that that action of $G L(E)$ is transitive on $G r_{m}(E)$.)
(b) Let P_{0} be as before, the subspace whose basis is the first m standard basis vectors, and let P be another subspace of E of the same dimension. Pick an orthonormal basis for P, and extend this to an orthonormal basis for E. The matrix whose columns are these basis vectors will lie in $K(E)$, and will send P_{0} to P. This shows that $K(E)$ acts transitively on $G r_{m}(E)$, hence that $G r_{m}(E)$ is a homogeneous space for $K(E)$. As before, a matrix $K(E)$ that sends P_{0} to itself must take the form $M=\left(\begin{array}{cc}A & B \\ 0 & C\end{array}\right)$. Since $M^{*} M=1$, we must have $A^{*} A=1, B^{*} B+C^{*} C=1$. In particular, $A^{*}=A^{-1}$. Since $M M^{*}=1, A A^{*}+B B^{*}=1$ and $C C^{*}=1$. But $A A^{*}=1$, so $B B^{*}=0$, so $B=0$. So we are left with matrices of the form $\left(\begin{array}{cc}A & 0 \\ 0 & C\end{array}\right)$ with A and C unitary (or, in the real case, orthogonal).

That is $G r_{m}(E)=U(n) /(U(m) \times U(n-m))$ for complex E, and $G r_{m}(E)=$ $O(n) /(O(m) \times O(n-m))$ for real E.

9: Since H is a connected closed subgroup of $G, H \subset G_{0}$, so we can take the quotient G_{0} / H. This set is open (since G_{0} is open) and closed (since G_{0} and H are closed). Since G / H is connected, this implies that $G_{0} / H=G / H$. I claim this implies that $G_{0}=G$. For suppose that $x \in G$. Then $x H=y H$ for some $y \in G_{0}$, so $x=y h_{1}$ for some $h_{1} \in H \subset G_{0}$. But $y h_{1} \in G_{0} G_{0}=G_{0}$.
10: a) Since $S^{n-1}=S O(n) / S O(n-1)$ is connected, and since $S O(2)=S^{1}$ is connected, it follows by induction on n that $S O(n)$ is connected (using the result of problem 9). Note that this only works for $n \geq 2$. The case of $S O(1)=1$ is separate.
b) $S L(n, \mathbf{R})$ acts transitively on $\mathbf{R}^{n}-\{0\}$, and the stabilizer of the point $(1,0,0, \ldots, 0)^{T}$
is all matrices of the form $\left(\begin{array}{cc}1 & A \\ 0 & B\end{array}\right)$, where $A \in \mathbf{R}^{n-1}$ is a row vector and $B \in S L(n-$ $1, \mathbf{R})$. Since \mathbf{R}^{n-1} is connected, we can apply our induction argument. $S L(1, \mathbf{R})=$ $\{1\}$ is connected. If $S L(n-1, \mathbf{R})$ is connected, then $H=S L(n-1, \mathbf{R}) \times \mathbf{R}^{n-1}$ is connected, and $R^{n}-\{0\}=S L(n, \mathbf{R}) / H$ is connected, so $S L(n, \mathbf{R})$ is connected.

Section 4.3:

5: To get the action of $\exp (t$ Drive $)$, we first note that θ is constant and $\phi(t)=\phi(0)+$ $t \sin (\theta)$. We then integrate the changes in x and y to get that $\exp (t$ Drive $)\left(x_{0}, y_{0}, \phi_{0}, \theta_{0}\right)=$ $\left(x_{0}+\left[\sin \left(\phi_{0}+\theta_{0}+t \sin \left(\theta_{0}\right)\right)-\sin \left(\phi_{0}+\theta_{0}\right)\right] / \sin \left(\theta_{0}\right), y_{0}-\left[\cos \left(\phi_{0}+\theta_{0}+t \sin \left(\theta_{0}\right)\right)-\right.\right.$ $\left.\left.\cos \left(\phi_{0}+\theta_{0}\right)\right] / \sin \left(\theta_{0}\right), \phi_{0}+t \sin \left(\theta_{0}\right), \theta_{0}\right)$.

Integrating Steer is trivial: $\theta \rightarrow \theta+t$, with all other coordinates constant.
Integrating Wriggle is similar to integrating Drive, since the formulas are IDENTICAL up to the substitution $\theta \rightarrow \theta-\pi / 2$. The result is that $\left(x_{0}, y_{0}, \phi_{0}, \theta_{0}\right)$ goes to $\left(x_{0}+\left[\cos \left(\phi_{0}+\theta_{0}+t \cos \left(\theta_{0}\right)\right)-\cos \left(\phi_{0}+\theta_{0}\right)\right] / \cos \left(\theta_{0}\right), y_{0}+\left[\sin \left(\phi_{0}+\theta_{0}+t \cos \left(\theta_{0}\right)\right)-\right.\right.$ $\left.\left.\sin \left(\phi_{0}+\theta_{0}\right)\right] / \cos \left(\theta_{0}\right), \phi_{0}+t \cos \left(\theta_{0}\right), \theta_{0}\right)$.

Integrating Slide sends $\left(x_{0}, y_{0}, \phi_{0}, \theta_{0}\right)$ to $\left(x_{0}-t \sin \left(\phi_{0}\right), y_{0}+t \cos \left(\phi_{0}\right), \phi_{0}, \theta_{0}\right)$.
6: Take Steer $=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$, Drive $=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$,
Wriggle $=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right)$ and finally Slide $=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0\end{array}\right)$. You can check
that all of the commutation relations work out correctly.

