1. a) Consider the (scalar) first-order differential equation $\frac{dy}{dx} = -\frac{3x^2 + e^y}{2y + xe^y}$, restricted to the first quadrant $(x \ge 0, y \ge 0)$. If y(2) = 0, what is y(0)? [Hint: rewrite the differential equation in exact form]

 $(2y+xe^y)dy+(3x^2+e^y)dx=0$ is exact, and is equivalent to $d(y^2+xe^y+x^3)=0$, or $y^2+xe^y+x^3=c$. Plugging in x=2,y=0 gives c=10, and plugging in x=0 gives $y=\sqrt{10}$. Note that y(0) is NOT equal to $-\sqrt{10}$. Since dy/dx is negative, y(0)>y(2).

b) Consider the differential equation $\frac{dx}{dt} = x + t$ with x(0) = 0. Find x(t) for all t. [There are several ways to do this. Any correct method will get full credit.]

This can be solved with integrating factors of by undetermined coefficients. Using integrating factors, we have $x(t) = e^t \int_0^t s e^{-s} ds = e^t - t - 1$. Using undetermined coefficients, we guess y = A + Bt and get A = B = -1 as a particular solution. So the general solution is $y = Ce^t - t - 1$. Plugging in y(0) = 0 gives C = 1.

2a. Find the general solution to y'' - 3y' + 2y = 0.

 $r^2 - 3r + 2 = 0$, so r = 1 or r = 2, and the general solution is $y = c_1 e^t + c_2 e^{2t}$.

b) Find a particular solution to $y'' - 3y' + 2y = e^t + e^{3t}$.

We can do this separately for e^t and e^{3t} or all at once. Since r=1 is a root and r=3 isn't, we guess $y=Ate^t+Be^{3t}$. Plug that in and solve for A and B to get $y=-te^t+\frac{1}{2}e^{3t}$ (plus arbitrary multiples of e^t and e^{2t} .

c) Find the general solution to y'' - 2y' + 2y = 0.

Now $r = 1 \pm i$, so the general solution is $y = e^t[c_1 \cos(t) + c_2 \sin(t)]$. This can also be expressed as $\tilde{c}_1 e^{(1+i)t} + \tilde{c}_2 e^{(1-i)t}$.

- 3. Using the methods of chapter 5, find a series solution $y = \sum_n a_n x^n$ to y'' 3y' + 2y = 0. More precisely,
- a) Find a recursion relation expressing a_n in terms of a_0, \ldots, a_{n-1} . If y(0) = 2 and y'(0) = 3, find y(0.1) to 3 decimal places. [No, you don't need a calculator for this.]

 $y'' = \sum (n+2)(n+1)a_{n+2}x^n$, $y' = \sum (n+1)a_{n+1}x^n$ and $y = \sum a_nx^n$. Setting the coefficient of x^{n-2} in y'' - 3y' + 2y equal to zero gives $n(n-1)a_n - 3(n-1)a_{n-1} + 2a_{n-2} = 0$, so $a_n = \frac{3(n-1)a_{n-1} - 2a_{n-2}}{n(n-1)}$. Plugging in $a_0 = 2$ and $a_1 = 3$ then gives $a_2 = 5/2$ and $a_3 = 3/2$, so $y(0.1) \approx a_0 + a_1/10 + a_2/100 + a_3/1000 = 3$

2.3265. To 3 decimal places, that's either 2.326 or 2.327. Looking at the a_4x^4 term shows that 2.327 is actually closer, but I'll accept either answer.

By the way, the exact solution is $y = e^x + e^{2x}$, whose Taylor series is $2 + 3x + (5/2)x^2 + (3/2)x^3 + \cdots$

b) Now consider the equation $x^2y'' - 2xy' + (2+x)y = 0$. For what values of r might a series solution $y = x^r \sum a_n x^n$ (with a_0 nonzero) exist? For the larger value of r, take $a_0 = 1$ and find a_1 and a_2 .

The equation for r is $r^2-3r+2=0$, so r=1 or 2. If $y=x^r \sum a_n x^n$, setting the coefficient of x^n equal to zero gives $[(n+r)(n+r-3)+2]a_n+a_{n-1}=0$, or $a_n=-a_{n-1}/[(n+r)(n+r-3)+2]$. For r=2 and $a_0=1$, $a_1=-1/2$, $a_2=(1/2)/6=1/12$.

4. a) Find the general solution to the system of ODEs $\frac{dx_1}{dt} = 2x_1 - 2x_2$, $\frac{dx_2}{dt} = x_1 - x_2$. Then find a solution with the initial conditions $x_1(0) = 8$, $x_2(0) = 5$.

The matrix $\begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix}$ has eigenvalues 0 and 1 with eigenvectors $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$, so our general solution is $c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^t$. This initial conditions say that $c_1 = 2$ and $c_2 = 3$, so $\vec{x} = \begin{pmatrix} 2 + 6e^t \\ 2^3 e^t \end{pmatrix}$.

b) Find the general solution to the system of ODEs $\frac{dx_1}{dt} = 2x_1 - x_2$, $\frac{dx_2}{dt} = 4x_1 - 2x_2$.

The matrix $\begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}$ has a single eigenvalue (0) with algebraic multiplicity 2 and geometric multiplicity 1. $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ is an eigenvector and $\vec{w} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$

is a vector with $A\vec{w} = \vec{v}$. Our general solution is $\vec{x} = c_1\vec{v} + c_2[\vec{w} + t\vec{v}]$.

- 5. This problem explores how a rectifier (e.g., the AC adapter on your laptop) turns AC current into DC current. The rectifier receives a signal, takes its absolute value, and then passes it through a filter to remove high-frequency components. What's left is close to the constant voltage that your laptop wants. Let $f(x) = \sin(x)$ (that's the wall voltage), and let g(x) = |f(x)|. Think of both of them as periodic functions with period 2π .
- a) Compute the Fourier coefficients \hat{f}_n for all n.

Since $f(x) = \sin(x) = [e^{ix} - e^{-ix}]/2i$, we have $\hat{f}_{-1} = i/2$, $\hat{f}_1 = -i/2$, and all other Fourier coefficients are zero.

b) Compute the Fourier coefficients \hat{g}_n for all n. [Many of these are zero by symmetry. The rest require integration.]

Note that $g(x) = \sin(x)$ for $0 < x < \pi$ and $g(x) = -\sin(x)$ for $\pi < x < 2\pi$, so $\hat{g}_n = \frac{1}{2\pi} \left[\int_0^\pi e^{-inx} \sin(x) dx - \int_\pi^{2\pi} e^{-inx} \sin(x) dx \right]$. If n is odd, the second integral cancels the first and $\hat{g}_n = 0$. If n is even, they given the same contribution, and $\hat{g}_n = \frac{1}{\pi} \int_0^\pi e^{-inx} \sin(x) dx$. Using the fact that $\sin(x) = \left[e^{ix} - e^{-ix} \right] / 2i$, this evaluates to $\hat{g}_n = -\frac{2}{\pi(n^2-1)}$.