M427K Final Exam, May 8, 2008

- 1. a) Consider the (scalar) first-order differential equation $\frac{dy}{dx} = -\frac{3x^2 + e^y}{2y + xe^y}$, restricted to the first quadrant $(x \ge 0, y \ge 0)$. If y(2) = 0, what is y(0)? [Hint: rewrite the differential equation in exact form]
- b) Consider the differential equation $\frac{dx}{dt} = x + t$ with x(0) = 0. Find x(t) for all t. [There are several ways to do this. Any correct method will get full credit.]
- 2a. Find the general solution to y'' 3y' + 2y = 0.
- b) Find a particular solution to $y'' 3y' + 2y = e^t + e^{3t}$.
- c) Find the general solution to y'' 2y' + 2y = 0.
- 3. Using the methods of chapter 5, find a series solution $y = \sum_n a_n x^n$ to y'' 3y' + 2y = 0. More precisely,
- a) Find a recursion relation expressing a_n in terms of a_0, \ldots, a_{n-1} . If y(0) = 2 and y'(0) = 3, find y(0.1) to 3 decimal places. [No, you don't need a calculator for this.]
- b) Now consider the equation $x^2y'' 2xy' + (2+x)y = 0$. For what values of r might a series solution $y = x^r \sum a_n x^n$ (with a_0 nonzero) exist? For the larger value of r, take $a_0 = 1$ and find a_1 and a_2 .
- 4. a) Find the general solution to the system of ODEs $\frac{dx_1}{dt} = 2x_1 2x_2$, $\frac{dx_2}{dt} = x_1 x_2$. Then find a solution with the initial conditions $x_1(0) = 8$, $x_2(0) = 5$.
- b) Find the general solution to the system of ODEs $\frac{dx_1}{dt} = 2x_1 x_2$, $\frac{dx_2}{dt} = 4x_1 2x_2$.
- 5. This problem explores how a rectifier (e.g., the AC adapter on your laptop) turns AC current into DC current. The rectifier receives a signal, takes its absolute value, and then passes it through a filter to remove high-frequency components. What's left is close to the constant voltage that your laptop wants. Let $f(x) = \sin(x)$ (that's the wall voltage), and let g(x) = |f(x)|. Think of both of them as periodic functions with period 2π .
- a) Compute the Fourier coefficients \hat{f}_n for all n.
- b) Compute the Fourier coefficients \hat{g}_n for all n. [Many of these are zero by symmetry. The rest require integration.]