
M365G Homework Solutions

1. Let S1 be a surface and p be a point on that surface. Show that there is a
direct isometry of R3 that sends p to the origin and that sends a neighborhood
of p in S1 to a surface S2 of the form z = f(x, y), where
f(x, y) = ax2/2 + by2/2 + O(r3), with O(r3) meaning terms that go to zero
at least as fast as (x2 + y2)3/2 as x, y → 0. More precisely, it means that
|f(x, y) − (ax2/2 + by2/2)|/(x2 + y2)3/2 is bounded in a neighborhood of the
origin. [Note: since everything is smooth, there is a Taylor series for f(x, y).
The expression O(r3) describes all the terms that go as xiyj with i + j ≥ 3.
This also means that the derivatives of the O(r3) terms are O(r2), and that
the second derivatives are O(r).]

First translate S1 by −p, so that the relevant point moves to the origin.
Then rotate so that TpS becomes the x-y plane. Then rotate about the z-axis
so that the principal directions at the origin are along the x and y axes. Use
x and y as coordinates, so that the first fundamental form at the origin is
the identity matrix. Since (1, 0) and (0, 1) are eigenvectors of the Weingarten
map (whose matrix is the same as the second fundamental form, since the
first fundamental form is the identity), the second fundamental form must
be diagonal, with L(0, 0) = a, M(0, 0) = 0 and N(0, 0) = b. This gives
the second derivatives of z with respect to x and y. By Taylor’s theorem,
z = ax2/2 + by2/2 +O(r3).

In the rest of this problem set, your answers should all be of the form
(Some quantity) = (Some expression involving a, b, x, y) + O(rsome power).
Don’t forget that (1 + ε)n = 1 + nε + O(ε2). This is particularly useful for
n = 1/2 and n = −1.

2. Using coordinates u = x and v = y, find expressions for the first and
second fundamental forms of S2 as a function of x, y, and compute the Gauss
curvature K.

Since σ(u, v) = (u, v, f(u, v)), σu = (1, 0, fu) = (1, 0, ax + O(r2)), and

σv = (0, 1, fv) = (0, 1, by+O(r2)), so the first fundamental form is

(
E F
F G

)
=(

1 + a2x2 abxy
abxy 1 + b2y2

)
+O(r3). Meanwhile, N = (−fu,−fv, 1)/

√
1 + f 2

u + f 2
v =

(−ax,−by, 1) + O(r2), so the second fundamental form is

(
L M
M N

)
=



(
a 0
0 b

)
+O(r) The Gauss curvature is (LN−M2)/(EG−F 2) = ab+O(r).

Note that it’s impossible to get rid of the O(r) correction, since there’s no
reason to believe that the gradient of K is zero at p.

3. Compute all the Christoffel symbols for S2 (see Prop 7.4.4), and compute
the commutator [∇1,∇2]. Your answer should be a 2× 2 matrix, from which
you can infer the value of C1 (as defined in class).

Since the first fundamental form is the identity +O(r2) (as is

(
E F
F G

)−1
),

we have

Γ1
11 = Eu/2 +O(r2) = a2x+O(r2)

Γ2
11 = Fu − (Ev/2) +O(r2) = aby +O(r2)

Γ1
12 = Γ1

21 = Ev/2 +O(r2) = O(r2)
Γ2
12 = Γ2

21 = Gu/2 +O(r2) = O(r2)
Γ1
22 = Fv − (Gu/2) +O(r2) = abx+O(r2)

Γ2
22 = Gv/2 +O(r2) = b2y +O(r2).

We can package the Christoffel symbols into two matrices:

A1 =

(
Γ1
11 Γ1

12

Γ2
11 Γ2

12

)
=

(
a2x 0
aby 0

)
+O(r2)

A2 =

(
Γ1
21 Γ1

22

Γ2
21 Γ2

22

)
=

(
0 abx
0 b2y

)
+O(r2)

We then have [∇1,∇2] = ∂1A2 − ∂2A1 + [A1, A2]. However, since A1

and A2 are O(r), [A1, A2] = O(r2), so we have [∇1,∇2] = ∂1A2 − ∂2A1 +

O(r2) =

(
0 ab
−ab 0

)
+O(r). Since a 90 degree clockwise rotation is (EG−

F 2)−1/2
(

F E
−G −F

)
=

(
0 1
−1 0

)
+O(r2), we infer that C1 = ab+O(r).

4. Show that the Gauss equations (Prop. 10.1.2, not to be confused with
the Gauss equations of Prop 7.4.4 – Gauss had a lot of equations!) apply
to S2 at the origin. An earlier version of this problem also asked about the
Codazzi-Mainardi equation. Do NOT evaluate those, as the expressions de-
pend strongly on the O(r3) terms in f(x, y). Also, this is practically the same
calculation as problem 3. Either problem is enough to conclude that K = C1

at the origin.



Since all of the Christoffel symbols vanish at the origin, the only terms
that contribute to the right-hand side are the partial derivatives. Also, E =
G = 1 and F = 0 at the origin. The four equations then become:

EK = K = ∂2Γ
2
11 − ∂1Γ2

12 = ab− 0 = ab
FK = 0 = ∂1Γ

1
12 − ∂2Γ1

11 = 0− 0 = 0
FK = 0 = ∂2Γ

2
12 − ∂1Γ2

22 = 0− 0 = 0
GK = K = ∂1Γ

1
22 − ∂2Γ121 = ab− 0 = ab

Since K = ab, it works!

5. Returning to the original surface S1, show that C1(p) = K(p). Conclude
that C1 and K are the same geometric quantity for all points on all surfaces.

C1 is computed from the first fundamental form, so it does not change
under isometries.

If you translate a surface, you don’t change any of the vectors σu, σv,
σuu, σuv, σvv, so you don’t change the first fundamental form or the second
fundamental form, so you don’t change K = (LN − M2)/(EG − F 2). If
you rotate a surface, you rotate all of the aforementioned vectors, but don’t
change any of their dot products, and so you don’t change the first or second
fundamental forms or change K. Thus K is invariant under direct isometries.
This means that K(p) for S1 equals K(0) for S2. Likewise, C1(p) for S1

equals C1(0) for S2. Since C1(0) = K for S2 (in that they both equal ab),
C1(p) = K(p) for S1.

The quantity K does not depend on a choice of coordinates. Neither
does C2, which is the rotation per unit area, regardless of coordinates. Since
C1 = C2 (as we showed in class), C1 is independent of coordinates. Thus
C1(p) = K(p) regardless of what coordinates we use. Since p was an arbitrary
point, C1 = K everywhere.

6. Geodesics on S2 are approximated very well by intersections of S1 with
vertical planes through the origin. That is, the shortest path from (0, 0, 0)
to (x0, y0, z0) has x/y constant. Taking this result for granted, compute the
distance from the origin to (x, y, f(x, y)).

Work in cylindrical coordinates (ρ, θ, z), where x = ρ cos(θ) and y =
ρ sin(θ). Define g(θ) = a cos2(θ) + b sin2(θ), so our surface is z = ρ2g(θ)/2 +
O(ρ3). Note, by the way, that g(θ) = a+b

2
+ a−b

2
cos(2θ), and that

g′(θ) = 2(b− a) sin(θ) cos(θ) = (b− a) sin(2θ).



Let r(ρ, θ) be the distance along a geodesic from the origin to (x, y, f(x, y)),
which we are approximating with a path of constant θ. Since ∂z/∂ρ = ρg(θ),
dr/dρ =

√
1 + g2ρ2 + O(ρ3) = 1 + g2ρ2/2 + O(ρ3). Integrating we get

r = ρ+ g2ρ3/6 +O(ρ4).

7. Using the results of Problem 6, construct geodesic normal coordinates
around the origin of S2.

Our coordinates are now r and θ, and ρ = r−r3g2/6+O(r4). We then have
σ(r, θ) = (r(1− r2g2/6) cos(θ) +O(r4), r(1− r2g2/6) sin(θ) +O(r4), r2g/2 +
O(r3)).

8. Now consider the “circle” obtained by fixing a value of r in the geodesic
normal coordinates. [Note that in this context r is the geodesic distance from
the origin, which is NOT the same as

√
x2 + y2. This isn’t a repeat of an

exam problem!] Show that the circumference of that “circle” is
2πr(1− abr2/6)+ higher order. This shows that the defect in the circumfer-
ence is proportional to the Gauss curvature.

σθ = (−r(1−r2g2/6) sin(θ)−r3gg′ cos(θ)/3+O(r4), r(1−r2g2/6) cos(θ)−
r3gg′ sin(θ)/3 + O(r4), r2g′/2 + O(r3)), so G = r2(1 − r2(g2/3 − (g′)2/4)) +
O(r5), as all the gg′ terms cancel. Thus

√
G = r(1 − r2(g2/6 − (g′)2/8)) +

O(r4). Integrating over the circle, the average value of (g′)2 is (b−a)2/2, and

the average value of g2 = (a+b)2

4
+ a2−b2

4
cos(2θ) + (a−b)2

4
cos2(θ) is (a+ b)2/4 +

(a− b)2/8. Thus our circumference is

2πr

(
1− r2

(
(a+ b)2

24
+

(a− b)2

48
− (a− b)2

16

))
+O(r4) = 2πr(1−abr2/6)+O(r4).

9. Finally, compute the area enclosed by the circle [hint:
∫

(circumference) dr]
and the isoperimetric ratio Area/(circumference)2.

Your answer to problem 9 SHOULD match the results of the exam prob-
lem. In the exam, we considered the intersection of a cylinder x2 + y2 = r2

with the surface. That resulted in a curve that approximates the “circle” of
problems 8 and 9. That approximation wasn’t good enough to compute the
circumference and area individually, but WAS good enough to compute the
isoperimetric ratio. This is because a circle maximizes the ratio, so deviations
from that circular shape only affect the ratio to second order.

Area =
∫

2πr − abπr3/3 +O(r4) dr = πr2 − πabr4/12 +O(r5)
= πr2(1− abr2/12 +O(r3)) = πr2(1−Kr2/12 +O(r3)).

Area/(circumference)2 = πr2

(2πr)2
1−Kr2/12+O(r3)
(1−Kr2/6+O(r3))2

= 1
4π

(1 +Kr2/4 +O(r3)).


