M408S Homework 11. Due Monday, April 8

Part 1: Alternating series and absolute convergence
A lot of you said that rearrangements were confusing. The following problems are designed to help cut through the fog.

1) Consider the series $1-1+(1 / 2)-(1 / 2)+(1 / 3)-(1 / 3)+(1 / 4)-(1 / 4)+\cdots$. Show that this series converges. (To what?) Does it converge absolutely or conditionally?
2) Now rearrange the series so that we have 2 positive terms then a negative term, then two more positive terms, then a negative term, and so on. In other words, $1+(1 / 2)-1+(1 / 3)+(1 / 4)-(1 / 2)+(1 / 5)+(1 / 6)-(1 / 3)+\cdots$. Show that the rearranged series still converges, but to a different value. You should be able to figure out what this value is, based on last week's problems about the integral test and $\sum(1 / n)$.
3) Now rearrange the series so that we have one positive term, then one negative, then 2 positive, then one negative, then 4 positive, then one negative, then 8 positive, then one negative, and so on. Show that this series diverges.
4) Now consider the series $1-1+(1 / 2)-(1 / 2)+(1 / 4)-(1 / 4)+(1 / 8)-$ $(1 / 8)+\cdots$. Show that this converges absolutely. Then do rearrangements analogous to problems 2 and 3 and see what happens. Do the rearranged series still converge? If so, to what values? Why?
5) Stewart, page 731, problems 32 and 34 .

Part 2: Root and ratio tests
Stewart pages 737-8, problems 4, 8, 14, 32.

