M408S Homework 5. Due Monday, February 18

In these problems, we are going to compare trig substitutions to partial fractions in examples where you can use either.

1) Compute $\int \frac{2 d x}{x^{2}-1}$ by partial fractions. Note that your answer works when $x^{2}<1$, and also works when $x^{2}>1$.
2) Now compute $\int \frac{2 d x}{x^{2}-1}=\int \frac{-2 d x}{1-x^{2}}$ with the trig substitution $x=\sin (\theta)$. Of course, this only works when $x^{2}<1$. How does your answer compare to what you got in problem 1?
3) Now compute $\int \frac{2 d x}{x^{2}-1}$ with the trig substitution $x=\sec (\theta)$, which applies when $x^{2}>1$. Again, how does your answer compare to problems 1 and 2 ?
4) Now compute $\int \frac{d x}{\left(1-x^{2}\right)^{2}}$ by whichever method you prefer. If you use a trig substitution, you are likely to need $\int \sec ^{3}(\theta) d \theta$, which is example 8 on page 475.

Book problems:
Section 7.3: Problems 4, 12 and 40.
Section 7.4: Problems 7, 9, and 54.

