
NOTES ON DIFFERENTIAL FORMS. PART 1: FORMS ON Rn

1. What is a form?

Since we’re not following the development in Guillemin and Pollack, I’d better write up an

alternate approach. In this approach, we’re first going to define forms on Rn via unmotivated

formulas, then prove that forms behave nicely, and only then go back and interpret forms

as a kind of tensor with certain (anti)symmetry properties.

On Rn, we start with the symbols dx1, . . . , dxn, which at this point are pretty much

meaningless. We define a multiplication operation on these symbols, denoted by a ∧, with

the condition

dxi ∧ dxj = −dxj ∧ dxi.

Of course, we also want the usual properties of multiplication to also hold. If α, β, γ are

arbitrary products of dxi’s, and if c is any constant, then

(α + β) ∧ γ = α ∧ γ + β ∧ γ
α ∧ (β + γ) = α ∧ β + α ∧ γ
(α ∧ β) ∧ γ = α ∧ (β ∧ γ)

(cα) ∧ β = α ∧ (cβ) = c(α ∧ β)(1)

Note that the anti-symmetry implies that dxi ∧ dxi = 0. Likewise, if I = {i1, . . . , ik} is a

list of indices where some index gets repeated, then dxi1 ∧ · · · ∧ dxik = 0, since we can swap

the order of terms (while keeping track of signs) until the same index comes up twice in a

row. For instance,

dx1 ∧ dx2 ∧ dx1 = −dx1 ∧ dx1 ∧ dx2 = −(dx1 ∧ dx1) ∧ dx2 = 0.

• A 0-form on Rn is just a function.

• A 1-form is an expression of the form
∑
i

fi(x)dxi, where fi(x) is a function and dxi

is one of our meaningless symbols.

• A 2-form is an expression of the form
∑
i,j

fij(x)dxi ∧ dxj.

• A k-form is an expression of the form
∑
I

fI(x)dxI , where I is a subset {i1, . . . , ik}

of {1, 2, . . . , n} and dxI is shorthand for dxi1 ∧ · · · ∧ dxik .

• If α is a k-form, we say that α has degree k.

For instance, on R3
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• 0-forms are functions

• 1-forms look like Pdx + Qdy + Rdz, where P , Q and R are functions and we are

writing dx, dy, dz for dx1, dx2, dx3.

• 2-forms look like Pdx ∧ dy + Qdx ∧ dz + Rdy ∧ dz. Or we could just as well write

Pdx ∧ dy −Qdz ∧ dx+Rdy ∧ dz.

• 3-forms look like fdx ∧ dy ∧ dz.

• There are no (nonzero) forms of degree greater than 3.

When working on Rn, there are exactly
(n
k

)
linearly independent dxI ’s of degree k, and

2n linearly independent dxI ’s in all (where we include 1 = dxI when I is the empty list). If

I ′ is a permutation of I, then dxI
′

= ±dxI , and it’s silly to include both fIdx
I and fI′dx

I′

in our expansion of a k-form. Instead, one usually picks a preferred ordering of {i1, . . . , ik}
(typically i1 < i2 < · · · < ik) and restrict our sum to I’s of that sort. When working with

2-forms on R3, we can use dx ∧ dz or dz ∧ dz, but we don’t need both.

If α =
∑

αI(x)dxI is a k-form and β =
∑

βJ(x)dxJ is an `-form, then we define

α ∧ β =
∑
I,J

αI(x)βJ(x)dxI ∧ dxJ .

Of course, if I and J intersect, then dxI ∧ dxJ = 0. Since going from (I, J) to (J, I) involves

k` swaps, we have

dxJ ∧ dxI = (−1)k`dxI ∧ dxJ ,

and likewise β ∧ α = (−1)k`α ∧ β. Note that the wedge product of a 0-form (aka function)

with a k-form is just ordinary multiplication.

2. Derivatives of forms

If α =
∑
I

αIdx
I is a k-form, then we define the exterior derivative

dα =
∑
I,j

∂αI(x)

∂xj
dxj ∧ dxI .

Note that j is a single index, not a multi-index. For instance, on R2, if α = xydx + exdy,

then

dα = ydx ∧ dx+ xdy ∧ dx+ exdx ∧ dy + 0dy ∧ dy
= (ex − x)dx ∧ dy.(2)

If f is a 0-form, then we have something even simpler:

df(x) =
∑ ∂f(x)

∂xj
dxj,

which should look familiar, if only as an imprecise calculus formula. One of our goals is to

make such statements precise and rigorous. Also, remember that xi is actually a function on
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Rn. Since ∂jx
i = 1 if i = j and 0 otherwise, d(xi) = dxi, which suggests that our formalism

isn’t totally nuts.

The key properties of the exterior derivative operator d are listed in the following

Theorem 2.1. (1) If α is a k-form and β is an `-form, then

d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ (dβ).

(2) d(dα) = 0. (We abbreviate this by writing d2 = 0.)

Proof. For simplicity, we prove this for the case where α = αIdx
I and β = βJdx

J each have

only a single term. The general case then follows from linearity.

The first property is essentially the product rule for derivatives.

α ∧ β = αI(x)βJ(x)dxI ∧ dxJ

d(α ∧ β) =
∑
j

∂j(αI(x)βJ(x))dxj ∧ dxI ∧ dxJ

=
∑
j

(∂jαI(x))βJ(x)dxj ∧ dxI ∧ dxJ

+
∑
j

αI(x)∂jβJ(x)dxj ∧ dxI ∧ dxJ

=
∑
j

(∂jαI(x))dxj ∧ dxI ∧ βJ(x)dxJ

+(−1)k
∑
j

αI(x)dxI ∧ ∂jβJ(x)dxj ∧ dxJ

= (dα) ∧ β + (−1)kα ∧ dβ.(3)

The second property for 0-forms (aka functions) is just “mixed partials are equal”:

d(df) = d(
∑
i

∂ifdx
i)

=
∑
j

∑
i

∂j∂ifdx
j ∧ dxi

= −
∑
i,j

∂i∂jfdx
i ∧ dxj

= −d(df) = 0,(4)

where in the third line we used ∂j∂if = ∂i∂jf and dxi ∧ dxj = −dxj ∧ dxi. We then use the

first property, and the (obvious) fact that d(dxI) = 0, to extend this to k-forms:

d(dα) = d(dαI ∧ dxI)
= (d(dαI)) ∧ dxI − dαI ∧ d(dxI)

= 0− 0 = 0.(5)

where in the second line we used the fact that dαI is a 1-form, and in the third line used the

fact that d(dαI) is d2 applied to a function, while d(dxI) = 0. �
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Exercise 1: On R3, there are interesting 1-forms and 2-forms associated with each vector

field v(x) = (v1(x), v2(x), v3(x)). (Here vi is a component of the vector v, not a vector in its

own right.) Let ω1
v = v1dx+v2dy+v3dz, and let ω2

v = v1dy∧dz+v2dz∧dx+v3dx∧dy. Let f be

a function. Show that (a) df = ω1

grad f, (b) dω1
v = ω2

curl v, and (c) dω2
v = (div v)dx∧dy∧dz,

where grad, curl, and div are the usual gradient, curl, and divergence operations.

Exercise 2: A form ω is called closed if dω = 0, and exact if ω = dν for some other

form ν. Since d2 = 0, all exact forms are closed. On Rn it happens that all closed forms

of nonzero degree are exact. (This is called the Poincare Lemma). However, on subsets

of Rn the Poincare Lemma does not necessarily hold. On R2 minus the origin, show that

ω = (xdy − ydx)/(x2 + y2) is closed. We will soon see that ω is not exact.

3. Pullbacks

Suppose that g : X → Y is a smooth map, where X is an open subset of Rn and Y is an

open subset of Rm, and that α is a k-form on Y . We want to define a pullback form g∗α

on X. Note that, as the name implies, the pullback operation reverses the arrows! While g

maps X to Y , and dg maps tangent vectors on X to tangent vectors on Y , g∗ maps forms

on Y to forms on X.

Theorem 3.1. There is a unique linear map g∗ taking forms on Y to forms on X such that

the following properties hold:

(1) If f : Y → R is a function on Y , then g∗f = f ◦ g.

(2) If α and β are forms on Y , then g∗(α ∧ β) = (g∗α) ∧ (g∗β).

(3) If α is a form on Y , then g∗(dα) = d(g∗(α)). (Note that there are really two different

d’s in this equation. On the left hand side d maps k-forms on Y to (k + 1)-forms on

Y . On the right hand side, d maps k forms on X to (k + 1)-forms on X. )

Proof. The pullback of 0-forms is defined by the first property. However, note that on Y ,

the form dyi is d of the function yi (where we’re using coordinates {yi} on Y and reserving

x’s for X). This means that g∗(dyi)(x) = d(yi ◦ g)(x) = dgi(x), where gi(x) is the i-th

component of g(x). But that gives us our formula in general! If α =
∑
I

αI(y)dyI , then

(6) g∗α(x) =
∑
I

αI(g(x))dgi1 ∧ dgi2 ∧ · · · ∧ dgik .

Using the formula (6), it’s easy to see that g∗(α ∧ β) = g∗(α) ∧ g∗(β). Checking that

g∗(dα) = d(g∗α) in general is left as an exercise in definition-chasing. �

Exercise 3: Do that exercise!

An extremely important special case is where m = n = k. The n-form dy1 ∧ · · · ∧ dyn is

called the volume form on Rn.
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Exercise 4: Let g is a smooth map from Rn to Rn, and let ω be the volume form on Rn.

Show that g∗ω, evaluated at a point x, is det(dgx) times the volume form evaluated at x.

Exercise 5: An important property of pullbacks is that they are natural. If g : U → V and

h : V → W , where U , V , and W are open subsets of Euclidean spaces of various dimensions,

then h ◦ g maps U → W . Show that (h ◦ g)∗ = g∗ ◦ h∗.

Exercise 6: Let U = (0,∞) × (0, 2π), and let V be R2 minus the non-negative x axis.

We’ll use coordinates (r, θ) for U and (x, y) for V . Let g(r, θ) = (r cos(θ), r sin(θ)), and let

h = g−1. On V , let α = e−(x
2+y2)dx ∧ dy.

(a) Compute g∗(x), g∗(y), g∗(dx), g∗(dy), g∗(dx ∧ dy) and g∗α (preferably in that order).

(b) Now compute h∗(r), h∗(θ), h∗(dr) and h∗(dθ).

The upshot of this exercise is that pullbacks are something that you have been doing for

a long time! Every time you do a change of coordinates in calculus, you’re actually doing a

pullback.

4. Integration

Let α be an n-form on Rn, and suppose that α is compactly supported. (Being com-

pactly supported is overkill, but we’re assuming it to guarantee integrability and to allow

manipulations like Fubini’s Theorem. Later on we’ll soften the assumption using partitions

of unity.) Then there is only one multi-index that contributes, namely I = {1, 2, . . . , n}, and

α(x) = αI(x)dx1 ∧ · · · ∧ dxn. We define

(7)

∫
Rn

α :=

∫
Rn

αI(x)|dx1 · · · dxn|.

The left hand side is the integral of a form that involves wedges of dxi’s. The right hand

side is an ordinary Riemann integral, in which |dx1 · · · dxn| is the usual volume measure

(sometimes written dV or dnx). Note that the order of the variables in the wedge product,

x1 through xn, is implicitly using the standard orientation of Rn. Likewise, we can define

the integral of α over any open subset U of Rn, as long as α restricted to U is compactly

supported.

We have to be a little careful with the left-hand-side of (7) when n = 0. In this case, Rn

is a single point (with positive orientation), and α is just a number. We take

∫
α to be that

number.

Exercise 7: Suppose g is an orientation-preserving diffeomorphism from an open subset U

of Rn to another open subset V (either or both of which may be all of Rn). Let α be a

compactly supported n-form on V . Show that∫
U

g∗α =

∫
V

α.
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How would this change if g were orientation-reversing? [Hint: use the change-of-variables

formula for multi-dimensional integrals. Where does the Jacobian come in?]

Now we see what’s so great about differential forms! The way they transform under

change-of-coordinates is perfect for defining integrals. Unfortunately, our development so

far only allows us to integrate n-forms over open subsets of Rn. More generally, we’d like

to integrate k-forms over k-dimensional objects. But this requires an additional level of

abstraction, where we define forms on manifolds.

Finally, we consider how to integrate something that isn’t compactly supported. If α is

not compactly supported, we pick a partition of unity {ρi} such that each ρi is compactly

supported, and define

∫
α =

∑∫
ρiα. Having this sum be independent of the choice of

partition-of-unity is a question of absolute convergence. If

∫
Rn

|αI(x)|dx1 · · · dxn converges

as a Riemann integral, then everything goes through. (The proof isn’t hard, and is a good

exercise in understanding the definitions.)

5. Differential forms on manifolds

An n-manifold is a (Hausdorff) space that locally looks like Rn. We defined abstract

smooth n-manifolds via structures on the coordinate charts. If ψ : U → X is a parametriza-

tion of a neighborhood of p ∈ X, where U is an open set in Rn, then we associate functions

on X near p with functions on U near ψ−1(p). We associate tangent vectors in X with veloc-

ities of paths in U , or with derivations of functions on U . Likewise, we associated differential

forms on X that are supported in the coordinate neighborhood with differential forms on U .

All of this has to be done “mod identifications”. If ψ1,2 : U1,2 → X are parametrizations of

the same neighborhood of X, then p is associated with both ψ−11 (p) ∈ U1 and ψ−12 (p) ∈ U2.

More generally, if we have an atlas of parametrizations ψi : Ui → X, and if gij = ψ−1j ◦ ψi is

the transition function from the ψi coordinates to the ψj coordinates on their overlap, then

we constructed X as an abstract manifold as

(8) X =
∐

Ui/ ∼, x ∈ Ui ∼ gij(x) ∈ Uj.

We had a similar construction for tangent vectors, and we can do the same for differential

forms.

Let Ωk(U) denote the set of k-forms on a subset U ∈ Rn, and let V be a coordinate

neighborhood of p in X. We define

(9) Ωk(V ) =
∐

Ωk(U1)/ ∼, α ∈ Ωk(Uj) ∼ g∗ij(α) ∈ Ωk(Ui).

Note the direction of the arrows. gij maps Ui to Uj, so the pullback g∗ij maps forms on Uj to

forms on Ui. Having defined forms on neighborhoods, we stitch things together in the usual

way. A form on X is a collection of forms on the coordinate neighborhoods of X that agree

on their overlaps.
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Let ν denote a form on V , as represented by a form α on Uj. We then write α = ψ∗j (ν).

As with the polar-cartesian exercise above, writing a form in a particular set of coordinates

is technically pulling it back to the Euclidean space where those coordinates live. Note that

ψi = ψj ◦ gij, and that ψ∗i = g∗ij ◦ ψ∗j , since the realization of ν in Ui is (by equation (9)) the

pullback, by gij, of the realization of ν in Uj.

This also tells us how to do calculus with forms on manifolds. If µ and ν are forms on X,

then

• The wedge product µ ∧ ν is the form whose realization on Ui is ψ∗i (µ) ∧ ψ∗i (ν). In

other words, ψ∗i (µ ∧ ν) = ψ∗i µ ∧ ψ∗i ν.

• The exterior derivative dµ is the form whose realization on Ui is d(ψ∗i (µ)). In other

words, ψ∗i (dµ) = d(ψ∗i µ).

Exercise 8: Show that µ ∧ ν and dµ are well-defined.

Now suppose that we have a map f : X → Y of manifolds and that α is a form on Y . The

pullback f ∗(α) is defined via coordinate patches. If φ : U ⊂ Rn → X and ψ : V ⊂ Rm → Y

are parametrizations of X and Y , then there is a map h : U → V such that ψ(h(x)) =

f(φ(x)). We define f ∗(α) to be the form of X whose realization in U is h∗ ◦ (ψ∗α). In other

words,

(10) φ∗(f ∗α) = h∗(ψ∗α).

An important special case is where X is a submanifold of Y and f is the inclusion map.

Then f ∗ is the restriction of α to X. When working with manifolds in RN , we often write

down formulas for k-forms on RN , and then say “consider this form on X”. E.g., one might

say “consider the 1-form xdy − ydx on the unit circle in R2”. Strictly speaking, this really

should be “consider the pullback to S1 ⊂ R2 by inclusion of the 1-form xdy − ydx on R2,”

but (almost) nobody is that pedantic!

6. Integration on oriented manifolds

Let X be an oriented k-manifold, and let ν be a k-form on X whose support is a compact

subset of a single coordinate chart V = ψi(Ui), where Ui is an open subset of Rk. Since X

is oriented, we can require that ψi be orientation-preserving. We then define

(11)

∫
X

ν =

∫
Ui

ψ∗i ν.

Exercise 9: Show that this definition does not depend on the choice of coordinates. That

is, if ψ1,2 : U1,2 → V are two sets of coordinates for V , both orientation-preserving, that∫
U1

ψ∗1ν =

∫
U2

ψ∗2ν.

If a form is not supported in a single coordinate chart, we pick an open cover of X

consisting of coordinate neighborhoods, pick a partition-of-unity subordinate to that cover,
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and define ∫
X

ν =
∑∫

X

ρiν.

We need a little bit of notation to specify when this makes sense. If α = αI(x)dx1∧· · ·∧dxk

is a k-form on Rk, let |α| = |αI(x)|dx1 ∧ · · · ∧ dxk. We say that ν is absolutely integrable if

each |ψ∗i (ρiν)| is integrable over Ui, and if the sum of those integrals converges. It’s not hard

to show that being absolutely integrable with respect to one set of coordinates and partition

of unity implies absolute integrability with respect to arbitrary coordinates and partitions

of unity. Those are the conditions under which

∫
X

ν unambiguously makes sense.

When X is compact and ν is smooth, absolute integrability is automatic. In practice, we

rarely have to worry about integrability when doing differential topology.

The upshot is that k-forms are meant to be integrated on k-manifolds. Sometimes

these are stand-alone abstract k-manifolds, sometimes they are k-dimensional submanifolds

of larger manifolds, and sometimes they are concrete k-manifolds embedded in RN .

Finally, a technical point. If X is 0-dimensional, then we can’t construct orientation-

preserving maps from R0 to the connected components of X. Instead, we just take

∫
X

α =∑
x∈X

±α(x), where the sign is the orientation of the point x. This follows the general principle

that reversing the orientation of a manifold should flip the sign of integrals over that manifold.

Exercise 10: Let X = S1 ⊂ R2 be the unit circle, oriented as the boundary of the unit disk.

Compute

∫
X

(xdy − ydx) by explicitly pulling this back to R with an orientation-preserving

chart and integrating over R. (Which is how you learned to do line integrals way back in

calculus.) [Note: don’t worry about using multiple charts and partitions of unity. Just use

a single chart for the unit circle minus a point.]

Exercise 11: Now do the same thing one dimension up. Let Y = S2 ⊂ R3 be the unit

sphere, oriented as the boundary of the unit ball. Compute

∫
X

(xdy∧dz+ydz∧dx+zdx∧dy)

by explicitly pulling this back to a subset of R2 with an orientation-preserving chart and

integrating over that subset of R2. As with the previous exercise, you can use a single

coordinate patch that leaves out a set of measure zero, which doesn’t contribute to the

integral. Strictly speaking this does not follow the rules listed above, but I’ll show you how

to clean it up in class.


