
NOTES ON DIFFERENTIAL FORMS. PART 4: INTEGRATION

1. The whole is the sum of the parts

Before we go about making sense of integrating forms over manifolds, we need to under-

stand what integrating functions over Rn actually means. When somebody writes∫ 3

0

exdx

or ∫
R2

e−(x
2+y2)dx dy

or ∫
R

f(x)dnx,

what is actually being computed?

The simplest case is in R. When we write

∫ b

a

f(x)dx, we have a quantity with density f(x)

spread out over the interval [a, b]. We imagine breaking that interval into small sub-intervals

[x0, x1], [x1, x2], up to [xN−1, xN ], where a = x0 and b = xN . We then have∫ b

a

f(x)dx = Amount of stuff in [a, b]

=
N∑
k=1

Amount of stuff in [xk−1, xk]

≈
N∑
k=1

f(x∗k)∆kx,(1)

where ∆kx = xk−xk−1 is the length of the kth interval, and x∗k is an arbitrarily chosen point

in the kth interval. As long as f is continuous and each interval is small, all values of f(x)

in the kth interval are close to f(x∗k), so f(x∗k)∆kx is a good approximation to the amount

of stuff in the kth interval. As N →∞ and the intervals are chosen smaller and smaller, the

errors go to zero, and we have∫ b

a

f(x)dx = lim
N→∞

N∑
k=1

f(x∗k)∆kx.

Note that I have not required that all of the intervals [xk−1, xk] be the same size! While

that’s convenient, it’s not actually necessary. All we need for convergence is for all of the

sizes to go to zero in the N →∞ limit.
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The same idea goes in higher dimensions, when we want to integrate any continuous

bounded function over any bounded region. We break the region into tiny pieces, estimate

the contribution of each piece, and add up the contributions. As the pieces are chosen smaller

and smaller, the errors in our estimates go to zero, and the limit of our sum is our exact

integral.

If we want to integrate an unbounded function, or integrate over an unbounded region,

we break things up into bounded pieces and add up the integrals over the (infinitely many)

pieces. A function is (absolutely) integrable if the pieces add up to a finite sum, no matter

how we slice up the pieces. Calculus books sometimes distinguish between “Type I” improper

integrals like

∫ ∞
1

x−3/2dx and “Type II” improper integrals like

∫ 1

0

y−1/2dy, but they are

really the same. Just apply the change of variables y = 1/x:∫ ∞
1

x−3/2dx =
∞∑
k=1

∫ k+1

k

x−3/2dx

=
∞∑
k=1

∫ 1/k

1/(k+1)

y−1/2dy

=

∫ 1

0

y−1/2dy.(2)

When doing such a change of variables, the width of the intervals can change drastically.

∆y is not ∆x, and x-intervals of size 1 turn into y-intervals of size
1

k(k + 1)
. Likewise, the

integrand is not the same. However, the contribution of the interval, whether written as

x−3/2∆x or y−1/2∆y, is the same (at least in the limit of small intervals).

In other words, we need to stop thinking about f(x) and dx separately, and think instead

of the combination f(x)dx, which is a machine for extracting the contribution of each small

interval.

But that’s exactly what the differential form f(x)dx is for! In one dimension, the covector

dx just gives the value of a vector in R1. If we evaluate f(x)dx at a sample point x∗k and

apply it to the vector xk − xk−1, we get

f(x)dx(~xk − ~xk−1) = f(x∗k)∆kx.

2. Integrals in 2 or More Dimensions

Likewise, let’s try to interpret the integral of f(x, y)dxdy over a rectangle R = [a, b]× [c, d]

in R2. The usual approach is to break the interval [a, b] into N pieces and the interval

[c, d] into M pieces, and hence the rectangle R into NM little rectangles with vertices at

(xi−1, yj−1), (xi, yj−1), (xi−1, yj) and (xi, yj), where i = 1, . . . , N and j = 1, . . . ,M .

So what is the contribution of the (i, j)-th sub-rectangle Rij? We evaluate f(x, y) at a

sample point (x∗i , y
∗
j ) and multiply by the area of Rij. However, that area is exactly what

you get from applying dx ∧ dy to the vectors ~v1 = (xi − xi−1, 0) and ~v2 = (0, yj − yj−1) that
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span the sides of the rectangle. In other words, f(x∗i , y
∗
j )∆ix∆jy is exactly what you get

when you apply the 2-form f(x, y)dx ∧ dy to the vectors (~v1, ~v2) at the point (x∗i , y
∗
j ). [Note

that this interpretation requires the normalization Ck,` =
(k + `)!

k!`!
for wedge products. If we

had used Ck,` = 1, as in Guillemin and Pollack, then dx ∧ dy(~v1, ~v2) would only be half the

area of the rectangle.]

The same process works for integrals over any bounded domain R in Rn. To compute∫
R

f(x)dnx:

(1) Break R into a large number of small pieces {RI}, which we’ll call “boxes”, each

of which is approximately a parallelpiped spanned by vectors ~v1, . . . , ~vn, where the

vectors don’t have to be the same for different pieces.

(2) To get the contribution of a box RI , pick a point x∗I ∈ RI , evaluate the n-form

f(x)dx1 ∧ · · · ∧ dxn at x∗I , and apply it to the vectors ~v1, . . . , ~vk. Your answer will

depend on the choice of x∗I , but all choices will give approximately the same answer.

(3) Add up the contributions of all of the different boxes.

(4) Take a limit as the sizes of the boxes go to zero uniformly. Integrability means that

this limit does not depend on the choices of the sample points x∗I , or on the way that

we defined the boxes. When f is continuous and bounded, this always works. When

f is unbounded or discontinuous, or when R is unbounded, work is required to show

that the limit is well-defined.

For instance, to integrate e−(x
2+y2)dxdy over the unit disk, we need to break the disk into

pieces. One way is to use Cartesian coordinates, where the boxes are rectangles aligned with

the coordinate axes and of size ∆x × ∆y. Another way is to use polar coordinates, where

the boxes have r and θ ranging over small intervals.

Exercise 1: Let RI be a “polar rectangle” whose vertices p1, p2, p3 and p4 have polar

coordinates (r0, θ0), (r0 + ∆r, θ0), (r0, θ0 + ∆θ) and r0 + ∆r, θ0 + ∆θ), respectively, where we

assume that ∆r is much smaller than r0 and that ∆θ is small in absolute terms. Let ~v1 be

the vector from p1 to p2 and ~v2 is the vector from p1 to p3.

(a) Compute dx ∧ dy(~v1, ~v2).

(b) If our sample point x∗I has polar coordinates (r∗, θ∗), evaluate the approximate contribu-

tion of this box.

(c) Express the limit of the sum over all boxes as a double integral over r and θ.

(d) Evaluate this integral.

3. Integration Over Manifolds

Now let X be an oriented n-manifold (say, embedded in RN), and let α be an n-form. The

integral

∫
X

α is the result of the following process.
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(1) Break X into a number of boxes XI , where each box can be approximated as a

parallelpiped containing a point p∗I , with the oriented collection of vectors ~v1, . . . , ~vn

representing the edges.

(2) Evaluate α at p∗I and apply it to the vectors ~v1, . . . , ~vn.

(3) Add up the contributions of all the boxes.

(4) Take a limit as the size of the boxes goes to zero uniformly.

In practice, Step 1 is usually done via a parametrization ψ, and letting the box XI be the

image under ψ of an actual ∆x1 × · · · ×∆xn rectangle in Rn, and setting ~vi = dψa(∆xi~ei),

where p∗I = ψ(a). Note that p∗I is not necessarily a vertex. It’s just an arbitrary point in the

box.

If the box is constructed in this way, then Step 2 is exactly the same as applying ψ∗α(a)

to the vectors {∆xi~ei}. But that makes integrating α over X the same as integrating ψ∗α

over Rn! This shows directly that different choices of coordinates give the same integrals, as

long as the coordinate patches are oriented correctly.

When a manifold consists of more than one coordinate patch, there are several things we

can do. One is to break X into several large pieces, each within a coordinate patch, and

then break each large piece into small coordinate-based boxes, exactly as described above.

Another is to use a partition of unity to write α =
∑

ρiα as a sum of pieces supported in

a single coordinate chart, and then integrate each αi separately.

This allows for a number of natural constructions where forms are defined intrinsically

rather than via coordinates.

Let X be an oriented (n − 1)-manifold in Rn, and let ~n(x) be the unit normal to X

at x whose sign is chosen such that, for any oriented basis ~v1, . . . , ~vn−1 of TxX, the basis

(~n,~v1, . . . , ~vn−1) of TxRn is positively oriented. (E.g, if X = ∂Y , then n is the normal

pointing out from Y ). Let dV = dx1 ∧ · · · ∧ dxn be the volume form on Rn. Define a form

ω on X by

ω(~v1, . . . , ~vn−1) = dV (~n,~v1, . . . , ~vn−1).

Exercise 2: Show that

∫
X

ω is the (n− 1)-dimensional volume of X.

More generally, let α be any k-form on a manifold X, and let ~w(x) be any vector field.

We define a new (k − 1)-form iwα by

(iwα)(~v1, . . . , ~vk−1) = α(~w,~v1, . . . , ~vk−1).

Exercise 3: Let S be a surface in R3 and let ~v(x) be a vector field. Show directly that∫
S

iv(dx∧dy∧dz) is the flux of ~v through S. That is, show that iv(dx∧dy∧dz) applied to a

pair of (small) vectors gives (approximately) the flux of ~v through a parallelogram spanned

by those vectors.

Exercise 4: In R3 we have already seen iv(dx ∧ dy ∧ dz). What did we call it?
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Exercise 5: Let ~v be any vector field in Rn. Compute d(iv(dx
1 ∧ · · · ∧ dxn)).

Exercise 6: Let α =
∑

αI(x)dxI be a k-form on Rn and let ~v(x) = ~ei, the i-th standard

basis vector for Rn. Compute d(ivα) + iv(dα). Generalize to the case where ~v is an arbitrary

constant vector field.

When ~v is not constant, the expression d(ivα) + iv(dα) is more complicated, and depends

both on derivatives of v and derivatives of αI , as we saw in the last two exercises. This

quantity is called the Lie derivative of α with respect to ~v.

It is certainly possible to feed more than one vector field to a k-form, thereby reducing

its degree by more than 1. It immediately follows that iviw = −iwiv as a map Ωk(X) →
Ωk−2(X).


