M408S (Sp) - Integral Calculus

Midterm 1

Ex \# 1. A honeybee population starts with 100 bees and changes at a rate of $n^{\prime}(t)$, where t is measured in weeks.
(1) What are the units of $\int_{5}^{7} n^{\prime}(t) d t$?
(2) What does $\int_{5}^{7} n^{\prime}(t) d t$ represent?
(3) What does $100+\int_{0}^{10} n^{\prime}(t) d t$ represent?
(4) Suppose that n^{\prime} is given by the graph below. Find how many honeybees are in the colony at the end of the first 6 weeks.

Ex \# 2. There is a popular clothing store that opens at noon. The function $f(x)=3 x+5$ gives the rate of people entering the store per hour after noon. The function $g(x)=x+5$ is the rate of females that enter the store per hour. How many males enter the store between 3 PM and 7 PM?

Ex \# 3. Given that $f(2)=3, \int_{2}^{7} f(x) d x=12, \int_{2}^{3} f(x) d x=5$, and $\int_{2}^{7} f^{\prime}(x) d x=3$, compute the following quantities. (Write "NI" if there's not enough information.)
(1) $f(7)=$
(2) $\int_{2}^{7} x f^{\prime}(x) d x=$
(3) $\int_{1}^{6} f^{\prime}(x+1) d x=$
(4) $\int_{2}^{3} x f\left(x^{2}-2\right) d x=$

Ex \# 4. Evaluate the following integrals.
(1) $\int(5 x+5) e^{x^{2}+2 x+3} d x=$
(2) $\int \cos x \ln (\sin x) d x=$
(3) $\int \frac{\sin x \cos x}{\sec ^{2} x} d x=$
(4) $\int_{0}^{\pi / 2} 2\left(\cos ^{3} \theta-\cos \theta\right) d \theta=$

Ex \# 5. The shaded region below is bounded by the curves $y=x^{2}, y=6-x$ and $x=0$.

(1) Set up (but do not evaluate) an integral that would give the volume of the solid obtained by rotating this region about the y-axis.
(2) Set up (but do not evaluate) an integral that would give the volume of the solid obtained by rotating this region about the x-axis.
(3) Set up (but do not evaluate) a different integral that would give the volume of the solid obtained by rotating this region about the y-axis.

Ex \# 6. Consider

$$
\int \frac{x^{2}-4}{\left(x^{2}+3\right)(7-x)(x+1)^{3}} d x .
$$

Write down the partial-fractions decomposition of the integrand. (You need not compute the coefficients that occur.)

M408S (Sp) - Integral Calculus

 Midterm 2Ex \# 7. The following integral

$$
\int_{-\infty}^{0} \frac{1}{\sqrt{8-x}} d x
$$

\square converges, \square diverges.

Justify your answer.

Ex \# 8.

(1) The following series
\square converges absolutely, \square converges conditionally, \square diverges.

Justify your answer.

$$
\sum_{j=1}^{\infty}(-1)^{j} \frac{2 \sqrt{j}}{3+j}
$$

(2) The following series
\square converges absolutely, \square converges conditionally, \square diverges

Justify your answer.

$$
\sum_{n=2}^{\infty} \frac{(n-1)!}{5^{n}}
$$

(3) The following series
\square converges absolutely, \square converges conditionally, \square diverges.

Justify your answer.

$$
\sum_{n=3}^{\infty} \frac{6+2^{n}}{7^{n}}
$$

Ex \# 9. Let $h(t)$ be the population of humans in Austin at time t in days. Write down a differential equation that models the growth of h as a function of time t in days if:
(1) the only factor affecting the human population is constant growth.
(2) in addition to (1), the human population dies at a rate that it's proportional to the population size.
(3) in addition to (2), zombies attack humans. Make sure that your model also includes the zombie population z (and remember that zombies need humans to survive!).

Ex \# 10. The $n^{\text {th }}$ partial sum S_{n} of an infinite series is

$$
S_{n}=\frac{n^{2}+(-1)^{n}}{\cos \left(\frac{1}{n}\right)+3 n^{2}} .
$$

(1) The series \square converges, \square diverges.
(2) If it converges, then to what does it converge? If it diverges, then why? Justify your answer.

Ex \# 11. Consider the differential equation

$$
\frac{d x}{d t}=\frac{x \ln x}{2 t}
$$

for $t>0$.
(1) Find explicitely all solutions of the differential equation.
(2) Find the particular solution satisfying $x(a)=b$.

Ex \# 12 (Bonus). Does the following sequence converge?

$$
a_{n}=\int_{\frac{1}{n}}^{1} \frac{1}{x^{3}} d x
$$

