M346 First Midterm Exam, July 25, 2011

1) (25 pts) Consider the matrix $A=\begin{pmatrix}1&1&1&3\\1&2&0&5\\2&3&1&8\end{pmatrix}$ and the vector

$$\mathbf{b} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
 (in \mathbb{R}^3). a) Find all solutions to $A\mathbf{x} = \mathbf{b}$.

- b) Find a basis for the column space of A
- c) Find a basis for the null space of A.
- 2. (15 points) Let $V = \mathbb{R}_2[t]$ be the space of quadratic polynomials in a variable t and consider the linear transformation $L(\mathbf{p}) = \mathbf{p}'(t) + \mathbf{p}(2t)$ from V to itself, where $\mathbf{p}'(t)$ is the derivative of $\mathbf{p}(t)$ and $\mathbf{p}(2t)$ means "plug in 2t instead of t". Find the matrix of this linear transformation with respect to the (standard) basis $\{1, t, t^2\}$.
- 3. (25 pts) In $\mathbb{R}_2[t]$, let $\mathcal{B} = \{1, t, t^2\}$ be the standard basis, and let $\mathcal{D} = \{1, 1+t, (1+t)^2\}$ be an alternate basis. Let $\mathbf{p}(t) = t^2 2t + 1$.
- a) Compute the change-of-basis matrices $P_{\mathcal{BD}}$ and $P_{\mathcal{DB}}$.
- b) Compute $[\mathbf{p}]_{\mathcal{D}}$. (Hint: first compute $[\mathbf{p}]_{\mathcal{B}}$.)
- c) Let $L: \mathbb{R}_2[t] \to \mathbb{R}_2[t]$ be a linear operator such that $[L]_{\mathcal{B}} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix}$. Compute $[L]_{\mathcal{D}}$. (Remember that $[L]_{\mathcal{B}}$ is shorthand for $[L]_{\mathcal{BB}}$, and likewise for $[L]_{\mathcal{D}}$.)
- 4. (20 points) a) Find the characteristic polynomial of $\begin{pmatrix} 2 & 3 \\ 4 & 0 \end{pmatrix}$. You do not need to find the eigenvalues or eigenvectors.
- b) Find the eigenvalues of $\begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}$. You do not have to find the eigenvectors.
- 5. True or false? (15 points) You do not have to justify your answers, and partial credit will not be given.
- a) If A is a 3×5 matrix and the column space of A is 2-dimensional, then the null space of A is also 2-dimensional.
- b) Every basis for $\mathbb{R}_2[t]$ contains exactly three vectors.
- c) If L is a linear operator from a vector space V to itself, and if \mathcal{B} and \mathcal{D} are bases for V, then $[L]_{\mathcal{D}} = P_{\mathcal{DB}}[L]_{\mathcal{B}}$.
- d) If $L: V \to V$ is a linear operator and $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis of V consisting of eigenvectors of L, then $[L]_{\mathcal{B}}$ is diagonal.
- e) The eigenvalues of a real matrix are real.