Artin fans

Simons symposium on Non-Archimedean and Tropical Geometry

Dan Abramovich

Brown University

February 6, 2015

Contributors:

- Martin Olsson
- Jonathan Wise
- Qile Chen, Steffen Marcus,
- Mark Gross, Bernd Siebert
- Martin Ulirsch

Superabundance

Mikhalkin-Speyer: there is a tropical cubic curve C of genus 1 in TP^3 which does not lift to an algebraic curve (Speyer, *Tropical Geometry*, Berkeley thesis 2005, Figure 5.1).

Figure 5.1: A Genus 1 Zero Tension Curve which is not Tropical

Superabundance (continued)

I want to understand this phenomenon.

Principles:

- Tropical curves $\Box \to TP^3$ encode in detail degenerations of curves $C \to \mathbb{P}^3$
- They encode logarithmic stable maps $C \to \mathbb{P}^3$.
- superabundance ↔ obstructedness
- I wish to describe a fairy-tale world in which this issue disappears, and is useful for geometers.

Logarithmic structures (Kato, Fontaine, Illusie)

Definition

A pre logarithmic structure is

$$X = (\underline{X}, M \stackrel{lpha}{ o} \mathcal{O}_{\underline{X}})$$
 or just (\underline{X}, M)

such that

- <u>X</u> is a scheme the *underlying scheme*
- *M* is a sheaf of monoids on *X*, and
- α is a monoid homomorphism, where the monoid structure on $\mathcal{O}_{\underline{X}}$ is the multiplicative structure.

Definition

It is a *logarithmic structure* if $\alpha : \alpha^{-1}\mathcal{O}_{\underline{X}}^* \to \mathcal{O}_{\underline{X}}^*$ is an isomorphism.

Examples

Examples

- $(\underline{X}, \mathcal{O}_{\underline{X}}^* \hookrightarrow \mathcal{O}_{\underline{X}})$, the trivial *logarithmic* structure.
- Let $\underline{X}, D \subset \underline{X}$ be a variety with a divisor. We define $M_D \hookrightarrow \mathcal{O}_{\underline{X}}$:

$$M_D(U) = \left\{ f \in \mathcal{O}_{\underline{X}}(U) \mid f_{U \smallsetminus D} \in \mathcal{O}_{\underline{X}}^{\times}(U \smallsetminus D) \right\}.$$

• Let k be a field, $\underline{X} = \operatorname{Spec} k$, define the *punctured point*:

$$egin{array}{rcl} \mathbb{N} \oplus k^{ imes} & o & k \ (n,z) & \mapsto & z \cdot 0^n \end{array}$$

defined by sending $0 \mapsto 1$ and $n \mapsto 0$ otherwise.

The magic of logarithmic geomery

Definition

Logarithmic smoothness = loc.fin. type + local lifting property.

Theorem (Kato)

 $f:X\to Y$ is log smooth if étale locally it is the pullback of a toric morphism: locally on Y

for a reasonable monoid homomorphism $M \to N$

• Any toric or toroidal variety X is logarithmically smooth over Spec k. $T_X\simeq \mathcal{O}_X^{\dim \underline{X}}.$

• A nodal curve is logarithmically smooth over a punctured point.

Here be monsters!

Logarithmic obstructions to deforming a logarithmic map $C \to \mathbb{P}^3$ lie in sequence

$$H^1(\underline{C}, T_{\underline{C}}) \to H^1(\underline{C}, \mathcal{O}_{\underline{C}}^3) \to Obs \to 0.$$

These can be nonzero on a broken cubic curve! The example of Mikhalkin - Speyer is such.

Artin fans

Olsson:

 $\{\text{Logarithmic structures } X \text{ on } \underline{X} \} \qquad \longleftrightarrow \qquad \{\underline{X} \to \text{Log} \}.$

The stack Log is huge and does not specify combinatorial data.

Theorem (Wise; ℵ, Chen, Marcus)

There is an initial factorization $X \to A_X \to \text{Log such that } A_X \to \text{Log is}$ étale, representable, strict.

The stack \mathcal{A}_X is small, totally combinatorial. The requirement "representable" is a compromise. Example: $\mathcal{A}_{\mathbb{A}^1} = [\mathbb{A}^1/\mathbb{G}_m]$. In general for toric X, $\mathcal{A}_X = [X/T]$.

\mathbb{P}^3 and $\mathcal{A}_{\mathbb{P}^3}$

$$\mathbb{P}^3 = (\mathbb{A}^4 \smallsetminus \{0\})/\mathbb{G}_m.$$

So $\{C o \mathbb{P}^3\} \leftrightarrow \{(\mathcal{L}, s_0, \dots, s_3) | s_i \text{ do not vanish together}\}.$
Now $\mathcal{A}_{\mathbb{P}^3} = (\mathbb{A}^4 \smallsetminus \{0\})/\mathbb{G}_m^4.$

So

 $\{C \to \mathcal{A}_{\mathbb{P}^3}\} \leftrightarrow \{((\mathcal{L}_0, s_0), \dots, (\mathcal{L}_3, s_3)) | s_i \text{ do not vanish together}\}.$

The monsters evaporate!

$$T_{\mathbb{P}^3} = \mathcal{O}^3$$
, but $T_{\mathcal{A}_{\mathbb{P}^3}} = 0$.

Logarithmic obstructions to deforming a logarithmic map $C\to \mathcal{A}_{\mathbb{P}^3}$ lie in a quotient of

$$H^1(\underline{C},0)=0.$$

The obstructions are gone!

Sample theorem

Theorem (ℵ-Wise)

If $Y \to X$ is a toroidal modification, then Logarithmic Gromov–Witten invariants of X coincide with those of Y.

Reason: $\mathfrak{M}(\mathcal{A}_Y) \to \mathfrak{M}(\mathcal{A}_X)$ is birational. So $\overline{\mathcal{M}}(Y) \to \overline{\mathcal{M}}(X)$ is virtually birational.

Nonarchimedean picture

here X^{\beth} is the Berkovich analytic formal fiber and $\overline{\Sigma}_X$ its skeleton / extended cone complex.

Ulirsch introduced an analytification of $X \to \mathcal{A}_X$:

I claim that \mathcal{A}_X^{\beth} is familiar to the audience:

So $\mathcal{A}_{\mathbb{A}^1}^{\beth}$ is homeomorphic to $\mathbb{R}_{\geq 0} \sqcup \{\infty\}$, the skeleton of \mathbb{A}^1 .

In general we have a homeomorphism $\mathcal{A}_X^{\beth} \sim \overline{\Sigma}_X$. The complete diagram is

Here, at least when X has Zariski charts,

- F_X is the underlying monoidal space of A_X , the Kato fan of X.
- The complex $\overline{\Sigma}_X$ can be identified as $F_X(\mathbb{R}_{\geq 0} \sqcup \{\infty\})$