COMPLEX ANALYTIC VANISHING CYCLES FOR FORMAL SCHEMES

VLADIMIR G. BERKOVICH

1. Previous work on vanishing cycles for formal schemes

Let k be a non-Archimedean field with nontrivial discrete valuation. A formal scheme over the ring of integers k° of k is said to be special if it is a locally finite union of open affine subschemes of the form $\operatorname{Spf}(A)$ with A isomorphic to a quotient of $k^{\circ}\{T_1, \ldots, T_m\}[[S_1, \ldots, S_n]]$. If all of these open affine subschemes can be found with n = 0, such \mathfrak{X} is said to be of locally finite type (or of finite type if in addition \mathfrak{X} is quasicompact). The class of locally finitely presented formal schemes \mathfrak{X} is preserved under formal completion $\mathfrak{X}_{/\mathcal{Y}}$ of \mathfrak{X} along an open subscheme $\mathcal{Y} \subset \mathfrak{X}_s$, and the class of special formal schemes is preserved under formal completion of \mathfrak{X} along an arbitrary subscheme of \mathfrak{X}_s . For example, if \mathcal{X} is a scheme of finite type over k° , then the formal completion $\widehat{\mathcal{X}}$ (resp. $\widehat{\mathcal{X}}_{/\mathcal{Y}}$) of \mathcal{X} along its closed fiber $\mathcal{X}_s = \mathcal{X} \otimes_{k^{\circ}} \widetilde{k}$ (resp. along an arbitrary subscheme $\mathcal{Y} \subset \mathcal{X}_s$) is a formal scheme of finite type (resp. a quasicompact special formal scheme) over k° . In what follows, we assume for simplicity that the residue field \widetilde{k} is algebraically closed and all of the special formal schemes and schemes considered are quasicompact.

Each special formal scheme \mathfrak{X} over k° has a generic fiber \mathfrak{X}_{η} , which is a paracompact strictly k-analytic space, and a closed fiber \mathfrak{X}_s , which is a scheme of finite type over the residue field \tilde{k} of k. In [Ber96] and [Ber15, §3.1], we constructed as follows a vanishing cycles functor $\Psi_{\eta} : \mathfrak{X}_{\eta} \to \mathfrak{X}_s(G)$ from the category of étale sheaves on \mathfrak{X}_{η} to the category of étale sheaves on \mathfrak{X}_s provided with a continuous (discrete) action of G, the Galois group of k. Recall that, by [Ber96, 2.1], the functor $\mathfrak{U} \mapsto \mathfrak{U}_s$ from the category special formal schemes étale over \mathfrak{X} to that of schemes étale over \mathfrak{X}_s is an equivalence of categories. We fix an inverse functor $\mathfrak{U}_s \mapsto \mathfrak{U}$ and, for a finite extension k' of k, set $\mathfrak{U}_{k'} = \mathfrak{U} \widehat{\otimes}_{k^{\circ}} k'^{\circ}$. Then for an étale sheaf F on \mathfrak{X}_{η} and a scheme \mathfrak{U}_s étale over \tilde{k} , one has

$$\Psi_{\eta}(F)(\mathfrak{U}_s) = \lim F((\mathfrak{U}_{k'})_{\eta}) ,$$

where the direct limit is taken over finite extensions k' of k in the algebraic closure $k^{\rm a}$ of k. In particular, for any discrete G-module Λ there is an associated complex of vanishing cycles sheaves $R\Psi_{\eta}(\Lambda_{\mathfrak{X}_{\eta}})$ on \mathfrak{X}_s , where $\Lambda_{\mathfrak{X}_{\eta}}$ is the locally constant sheaf on \mathfrak{X}_{η} induced by Λ . The construction is functorial and, therefore, any morphism of special formal schemes $\varphi: \mathfrak{Y} \to \mathfrak{X}$ gives rise to a morphism

$$\theta_{\eta}(\varphi, \Lambda) : \varphi_s^*(R\Psi_{\eta}(\Lambda_{\mathfrak{X}_n})) \to R\Psi_{\eta}(\Lambda_{\mathfrak{Y}_n})$$
.

Among other things, we proved the following results. Suppose Λ is finite of order not divisible by char (\tilde{k}) . Then

(i) the sheaves $R^q \Psi_\eta(\Lambda_{\mathfrak{X}_n})$ are constructible;

VLADIMIR G. BERKOVICH

- (ii) one has $H^q(\mathfrak{X}_{\overline{\eta}}, \Lambda) = R^q \Gamma(\mathfrak{X}_s, R\Psi_\eta(\Lambda_{\mathfrak{X}_n}))$, where $\mathfrak{X}_{\overline{\eta}} = \mathfrak{X}_\eta \widehat{\otimes}_k \widehat{k^a}$;
- (iii) given \mathfrak{X} and \mathfrak{Y} as above, there exists an ideal of definition \mathcal{J} of \mathfrak{Y} such that, for any pair of morphisms $\varphi, \psi : \mathfrak{Y} \to \mathfrak{X}$ congruent modulo \mathcal{J} , one has $\theta_n(\varphi, \Lambda) = \theta_n(\psi, \Lambda)$;
- (iv) given a scheme \mathcal{Y} of finite type over k° and a subscheme $\mathcal{Z} \subset \mathcal{Y}_s$, there is a canonical isomorphism $R\Psi_{\eta}(\Lambda_{\mathcal{Y}_{\eta}})|_{\mathcal{Z}} \rightarrow R\Psi_{\eta}(\Lambda_{(\widehat{\mathcal{Y}}_{/\mathcal{Z}})_{\eta}})$, where $R\Psi_{\eta}(\Lambda_{\mathcal{Y}_{\eta}})$ is the vanishing cycles complex of the scheme \mathcal{Y} .

We remark that although the above functor Ψ_{η} gives rise to vanishing cycles complexes for arbitrary discrete *G*-modules Λ , e.g., **Z**, those complexes do not possess good properties, and the reason is that such properties are not satisfied by the integral étale cohomology groups of algebraic varieties and non-Archimedean analytic spaces.

2. Complex analytic vanishing cycles for formal schemes

Let now K be a non-Archimedean field of the same type as k and, in addition, assume its ring of integers K° contains the field of complex numbers \mathbf{C} and $\mathbf{C} \rightarrow \widetilde{K}$. There is a canonical isomorphism $G \rightarrow \lim_{\leftarrow} \mu_n$ of the Galois group G of K. The element $\sigma = (e^{\frac{2\pi i}{n}})_{n\geq 1}$ of the projective limit generates a subgroup Π isomorphic to \mathbf{Z} and defines an isomorphism $G \rightarrow \widehat{\mathbf{Z}}$. Furthermore, each generator ω of the maximal ideal $K^{\circ\circ}$ of K° induces a homomorphism $\mathcal{O}_{\mathbf{C},0} \rightarrow K^{\circ}$ that takes the coordinate function z of \mathbf{C} to ω . It gives rise to isomorphisms $\widehat{\mathcal{O}}_{\mathbf{C},0} \rightarrow K^{\circ}$ and $G = \operatorname{Gal}(K^{\mathrm{a}}/K) \rightarrow \operatorname{Gal}(\mathcal{K}^{\mathrm{a}}/\mathcal{K})$, where \mathcal{K} is the fraction field of $\mathcal{O}_{\mathbf{C},0}$. The latter isomorphism does not depend on the choice of ω and identifies the subgroup Π with the fundamental group $\pi_1(\mathbf{C}^*)$.

In our work in progress we construct, for every special formal scheme $\mathfrak X$ over $K^\circ,$ an exact functor

$$D^{b}(\Pi\operatorname{-Mod}) \to D^{b}(\mathfrak{X}^{h}_{s}(\Pi)) : \Lambda^{\cdot} \mapsto R\Psi^{h}_{\eta}(\Lambda^{\cdot}_{\mathfrak{X}_{\eta}})$$

where the former denotes the derived category of bounded complexes of Π -modules, and the latter denotes the derived category of bounded complexes of abelian Π sheaves on \mathfrak{X}^h_s , the complex analytification of the scheme \mathfrak{X}_s . (The notation $R\Psi^h_{\eta}(\Lambda_{\mathfrak{X}_{\eta}})$ for the resulting complex is suggestive, even $\Lambda_{\mathfrak{X}_{\eta}}$ does not represent a complex of étale sheaves on \mathfrak{X}_{η} unless Λ^{\cdot} is a complex of discrete *G*-modules.) We prove that the complexes $R\Psi^h_{\eta}(\Lambda_{\mathfrak{X}_{\eta}})$ possess the following properties:

(i) they are functorial in \mathfrak{X} and, in particular, every morphism of special formal schemes $\varphi : \mathfrak{Y} \to \mathfrak{X}$ gives rise to a morphism of complexes

$$\theta^h_\eta(\varphi,\Lambda^{\cdot}):\varphi^{h*}_s(R\Psi^h_\eta(\Lambda^{\cdot}_{\mathfrak{X}_\eta}))\to R\Psi^h_\eta(\Lambda^{\cdot}_{\mathfrak{Y}_\eta})\;;$$

(ii) there is a canonical isomorphism

$$R\Psi^h_{\eta}(\Lambda^{\cdot}_{\mathfrak{X}_{\eta}}) = R\Psi^h_{\eta}(\mathbf{Z}_{\mathfrak{X}_{\eta}}) \otimes^{\mathbf{L}}_{\mathbf{Z}_{\mathfrak{X}_{s}^{h}}} \underline{\Lambda}^{\cdot}_{\mathfrak{X}_{s}^{h}},$$

where $\underline{\Lambda}_{\mathfrak{X}_s^h}^{\cdot}$ is the complex of constant sheaves on \mathfrak{X}_s^h associated to the complex $\underline{\Lambda}^{\cdot}$ and provided with the induced action of the group Π ;

(iii) the sheaves $R^q \Psi^h_{\eta}(\mathbf{Z}_{\mathfrak{X}_{\eta}})$ are (algebraically) constructible in the sense of [Ver76, §2], and the action of Π on them is quasi-unipotent;

 $\mathbf{2}$

(iv) given a subscheme $\mathcal{Y} \subset \mathfrak{X}_s$, there is a canonical isomorphism

$$R\Psi^{h}_{\eta}(\Lambda^{\cdot}_{\mathfrak{X}_{\eta}})\big|_{\mathcal{Y}} \widetilde{\to} R\Psi^{h}_{\eta}(\Lambda^{\cdot}_{(\mathfrak{X}_{/\mathcal{Y}})_{\eta}});$$

- (v) given \mathfrak{X} with rig-smooth generic fiber, there exists $n \geq 1$ such that, for every \mathfrak{Y} of finite type over K° , every pair of morphisms $\varphi, \psi : \mathfrak{Y} \to \mathfrak{X}$ congruent modulo $(K^{\circ\circ})^n$ and every Λ^{\cdot} , one has $\theta_n^h(\varphi, \Lambda^{\cdot}) = \theta_n^h(\psi, \Lambda^{\cdot})$;
- (vi) given \mathfrak{X} and \mathfrak{Y} both with rig-smooth generic fibers, there exists an ideal of definition \mathcal{J} of \mathfrak{Y} such that, for every pair of morphisms $\varphi, \psi : \mathfrak{Y} \to \mathfrak{X}$ congruent modulo \mathcal{J} and every Λ^{\cdot} , one has $\theta_n^h(\varphi, \Lambda^{\cdot}) = \theta_n^h(\psi, \Lambda^{\cdot})$;
- (vii) if Λ^{\cdot} is a complex of discrete $\mathbf{Z}/n\mathbf{Z}[G]$ -modules whose cohomology modules are finite, then there is a canonical isomorphism

$$(R\Psi_{\eta}(\Lambda^{\cdot}_{\mathfrak{X}_{n}}))^{h} \widetilde{\to} R\Psi^{h}_{\eta}(\Lambda^{\cdot}_{\mathfrak{X}_{n}})$$
,

where $R\Psi_{\eta}(\Lambda_{\mathfrak{F}})$ is the vanishing cycles complex on \mathfrak{X}_s from §1;

(viii) given a morphism of germs of complex analytic spaces $(B, b) \to (\mathbf{C}, 0)$, a scheme \mathcal{Y} of finite type over $\mathcal{O}_{B,b}$, and a generator ω of $K^{\circ\circ}$, there is a canonical isomorphism

$$R\Psi_{\eta}(\Lambda^{\cdot}_{\mathcal{Y}^{h}_{n}}) \widetilde{\to} R\Psi^{h}_{\eta}(\Lambda^{\cdot}_{\widehat{\mathcal{V}}_{n}})$$

Here is an explanation of the objects on both sides of the isomorphism in (viii). First of all, the element ω defines an isomorphism $\widehat{\mathcal{O}}_{\mathbf{C},0} \xrightarrow{\sim} K^{\circ}$ which allows one to view the formal completion $\widehat{\mathcal{Y}}$ of \mathcal{Y} along the closed fiber $\mathcal{Y}_s = \mathcal{Y} \otimes_{\mathcal{O}_{B,b}} \mathbf{C}$ as a

special formal scheme over K° , and the right hand side in (viii) is the value at Λ° of the above exact functor $R\Psi^{h}_{\eta}$ associated to the special formal scheme $\widehat{\mathcal{Y}}$.

Furthermore, the scheme \mathcal{Y} defines a complex analytic space \mathcal{Y}^h over an open neighborhood of b in B. If the neighborhood is small enough, there is an induced morphism $\mathcal{Y}^h \to \mathbf{C}$. The same construction applied to the schemes \mathcal{Y}_s and $\mathcal{Y}_\eta =$ $\mathcal{Y} \otimes_{\mathcal{O}_{\mathbf{C},0}} \mathcal{K}$ gives the usual complex analytification \mathcal{Y}^h_s of \mathcal{Y}_s and a space \mathcal{Y}^h_η , which can be identified with the preimage of \mathbf{C}^* under the above morphism. The complex of Π -modules Λ^{\cdot} defines a complex of locally constant sheaves on \mathbf{C}^* whose pullback on \mathcal{Y}^h_η is denoted by $\Lambda^{\cdot}_{\mathcal{Y}^h_\eta}$. The left hand side in (viii) is the value at $\Lambda^{\cdot}_{\mathcal{Y}^h_\eta}$ of the derived functor of the following complex analytic vanishing cycles functor Ψ_η from the category of sheaves on \mathcal{Y}^h_η to the category of Π -sheaves on \mathcal{Y}^h_s (it is a particular case of the definition from [SGA7, Exp. XIV]). The above three analytic spaces define morphisms

where $\mathcal{Y}_{\overline{\eta}}^{h} = \mathcal{Y}_{\eta}^{h} \times_{\mathbf{C}^{*}} \mathbf{C}$ and the fiber product is taken with respect to the universal covering map $\mathbf{C} \to \mathbf{C}^{*} : z \mapsto e^{2\pi i z}$. The complex analytic vanishing cycles functor is defined by $\Psi_{\eta}(F) = i^{*}(\overline{j}_{*}\overline{F})$, where \overline{F} is the lift of F to $\mathcal{Y}_{\overline{\eta}}$.

The continuity properties (v) and (vi) are stronger than corresponding results from [Ber96] and [Ber15], but the assumptions on rig-smoothness are probably superfluous. In any case, if $\mathfrak{X} = \widehat{\mathcal{Y}}$ for \mathcal{Y} from (viii), then \mathfrak{X}_{η} is rig-smooth if and if the complex analytic space \mathcal{Y}_{η}^{h} is smooth over \mathbf{C}^{*} .

VLADIMIR G. BERKOVICH

The main ingredients used in the construction of the vanishing cycles complexes and establishing their properties are Michael Temkin's work on desingularization of quasi-excellent schemes in characteristic zero ([Tem08], [Tem09]), the work of Kazuya Kato and his collaborators on log geometry ([Kat89], [KN99], [Nak98]), and author's work on vanishing cycles for formal schemes ([Ber93], [Ber96b], [Ber15]).

3. Integral étale cohomology of analytic spaces

The above results are used to define, for every compact strictly K-analytic space X, integral étale cohomology groups $H^q(\overline{X}, \mathbb{Z})$ of $\overline{X} = X \widehat{\otimes}_K \widehat{K^a}$. Namely, we fix for every X a formal scheme \mathfrak{X} of finite type over K° with $\mathfrak{X}_\eta = X$ (it exists by Raynaud's theory), and set $H^q(\overline{X}, \mathbb{Z}) = R^q \Gamma(\mathfrak{X}^h_s, R\Psi^h_\eta(\mathbb{Z}_{\mathfrak{X}_\eta}))$. (This definition corresponds to the property (ii) from §1.) We prove that

- (i) the groups $H^q(\overline{X}, \mathbf{Z})$ do not depend on the choice of \mathfrak{X} up to a canonical isomorphism, and the correspondence $X \mapsto H^q(\overline{X}, \mathbf{Z})$ is functorial in X;
- (ii) the groups $H^q(\overline{X}, \mathbf{Z})$ are finitely generated and provided with a quasiunipotent action of Π ;
- (iii) given a finite covering $\mathcal{V} = \{V_i\}_{i \in I}$ of X by compact strictly analytic domains, there is a Leray spectral sequence

$$E_2^{p,q} = \check{H}^p(\mathcal{V}, \mathcal{H}^q) \Longrightarrow H^{p+q}(\overline{X}, \mathbf{Z}) ,$$

where \mathcal{H}^q is the presheaf $V \mapsto H^q(\overline{V}, \mathbb{Z})$ on the family of those domains; (iv) for every prime l, there are canonical Π -equivariant isomorphisms

$$H^{q}(\overline{X}, \mathbf{Z}) \otimes_{\mathbf{Z}} \mathbf{Z}_{l} \widetilde{\rightarrow} H^{q}(\overline{X}, \mathbf{Z}_{l}) = \lim_{\longleftarrow} H^{q}(\overline{X}, \mathbf{Z}/l^{n}\mathbf{Z}) ,$$

where $H^q(\overline{X}, \mathbf{Z}/l^n \mathbf{Z})$ are the étale cohomology groups of \overline{X} from [Ber93];

- (v) if X is rig-smooth, the uniform space of morphisms of compact strictly K-analytic spaces $Y \to X$ acts continuously on the discrete set of induced homomorphisms $H^q(\overline{X}, \mathbf{Z}) \to H^q(\overline{Y}, \mathbf{Z})$;
- (vi) there are canonical Π -equivariant homomorphisms $H^q(|\overline{X}|, \mathbf{Z}) \to H^q(\overline{X}, \mathbf{Z})$, where the groups on the left hand side are cohomology groups of the underlying topological space $|\overline{X}|$ of \overline{X} ;
- (vii) in the situation of (viii) from §2, if \mathcal{Y} is separated and $\mathcal{Y} = \mathcal{Y}_{\eta}$, then every morphism of K-analytic spaces $X \to \mathcal{Y}^{\mathrm{an}}$ gives rise to canonical Π equivariant homomorphisms $H^q(\overline{\mathcal{Y}^h}, \mathbb{Z}) \to H^q(\overline{X}, \mathbb{Z})$, which are functorial in X and \mathcal{Y} .

In (iv), if $X = \mathcal{Y}^{an}$ for a proper scheme \mathcal{Y} over K then, by [Ber93], $H^q(\overline{X}, \mathbf{Z}_l)$ coincide with the *l*-adic étale cohomology groups $H^q(\overline{\mathcal{Y}}, \mathbf{Z}_l)$ of the scheme $\overline{\mathcal{Y}} = \mathcal{Y} \otimes_K K^a$, and we get canonical Π -equivariant isomorphisms

$$H^q(\overline{\mathcal{Y}^{\mathrm{an}}}, \mathbf{Z}) \otimes_{\mathbf{Z}} \mathbf{Z}_l \widetilde{\to} H^q(\overline{\mathcal{Y}}, \mathbf{Z}_l) \;.$$

In (v), the uniform space structure on the set of morphisms is from [Ber94, §6]. In (vii), \mathcal{Y}^{an} is the *K*-analytic space associated (in [Ber15, §3.2]) to the scheme $\mathcal{Y} \otimes_{\mathcal{O}_{B,b}} (\widehat{\mathcal{O}}_{B,b} \otimes_{K^{\circ}} K)$, and $\overline{\mathcal{Y}^{h}} = \mathcal{Y}^{h} \times_{\mathbf{C}^{*}} \mathbf{C}$ with respect to the morphism $\mathbf{C} \to \mathbf{C}^{*} : z \mapsto e^{2\pi i z}$. If \mathcal{Y} is proper over \mathcal{K} , then \mathcal{Y}^{an} is compact, and (vi) implies that there are canonical Π -equivariant isomorphisms

$$H^q(\overline{\mathcal{Y}^h}, \mathbf{Z}) \widetilde{\to} H^q(\overline{\mathcal{Y}^{\mathrm{an}}}, \mathbf{Z}) \; .$$

We conjecture that the above groups $H^q(\overline{X}, \mathbf{Z})$ are provided with a mixed Hodge structure which is functorial in X and such that, if $X = \mathcal{Y}^{\mathrm{an}}$ for a proper scheme \mathcal{Y} over \mathcal{K} as in the previous paragraph, it coincides with the limit mixed Hodge structure on the groups $H^q(\overline{\mathcal{Y}^h}, \mathbf{Z})$.

References

- [Ber94] Berkovich, V. G.: Vanishing cycles for formal schemes, Invent. Math. 115 (1994), 539-571.
- [Ber96] Berkovich, V. G.: Vanishing cycles for formal schemes. II, Invent. Math. 125 (1996), no. 2, 367-390.
- [Ber15] Berkovich, V. G.: Finiteness theorems for vanishing cycles of formal schemes, Israel J. Math. (to appear).
- [Kat89] Kato, K.: Logarithmic structures of Fontaine-Illusie in Algebraic analysis, geometry, and number theory, Johns Hopkins University Press, Baltimore, 1989, 191-224.
- [KN99] Kato, K.; Nakayama, C.: Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over C, Kodai Math. J. 22 (1999), 161-186.
- [Nak98] Nakayama, C.: Nearby cycles for log smooth families, Compos. Math. 112 no. 1 (1998), 45-75.
- [SGA7] Grothendieck, A; Deligne, P.; Katz, N.: Groupes de Monodromie en Géométrie Algébrique, Lecture Notes in Math. 288, 340, Springer, Berlin-Heidelberg-New York, 1972-1973.
- [Tem08] Temkin, M.: Desingularization of quasi-excellent schemes in characteristic zero, Advances in Math. 219 (2008), 488-522.
- [Tem09] Temkin, M.: Functorial desingularization over Q: boundaries and the embedded case, arXiv:0912.2570
- [Ver76] Verdier, J.-L.: Classe d'homologie associée à un cycle, Asterisque **36-37** (1976), 189-228.

Department of Mathematics, The Weizmann Institute of Science, P.O.B. 26, 76100 Rehovot, ISRAEL

E-mail address: vladimir.berkovich@weizmann.ac.il