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Abstract. We study an obstruction to prescribing the dual complex of
a strict semistable degeneration of an algebraic surface. In particular, we
show that if ∆ is a complex homeomorphic to a 2-dimensional manifold
with negative Euler characteristic, then ∆ is not the dual complex of any
semistable degeneration. In fact, our theorem is somewhat more general
and applies to some complexes homotopy equivalent to such a manifold.
Our obstruction is provided by the theory of tropical complexes.

The dual complex of a semistable degeneration is a combinatorial encoding
of the combinatorics of the components of the special fiber. In recent years,
it has been studied because of connections to tropical geometry [HK12], non-
Archimedean analytic geometry [Ber99], and birational geometry [dFKX12,
BF14]. In this paper, we study obstructions to realizing arbitrary complexes
as dual complexes of degenerations of surfaces.

We let R be any rank 1 valuation ring and we will consider a degeneration
over R to be a flat, proper scheme X over SpecR which is strictly semistable
in the sense of [GRW14, Sec. 3]. The dual complex of X is a ∆-complex with
one vertex for each component of the special fiber and higher-dimensional
simplices for each connected component where components intersect.

Since semistability implies that the special fiber is normal crossing, the
dimension of the dual complex is at most the relative dimension of the
family X. In dimension 1, any graph is the dual complex of some degeneration
of curves [Bak08, Cor. B.3]. However, in this paper, we show that the
analogous statement is not true in dimension 2.

Theorem 1. There is no strict semistable degeneration of surfaces over a
rank 1 valuation ring R such that the dual complex of the special fiber is
homeomorphic to a topological surface Σ with χ(Σ) < 0.

We conjecture that Theorem 1 can be strengthened to replace “homeo-
morphic” with “homotopy equivalent.” In fact, we can prove a strengthening
in this direction which applies to ∆-complexes formed from a manifold with
negative Euler characteristic by attaching additional simplices in a controlled
way. First, what we call “fins” are allowed so long as they don’t change
the homotopy type and where the gluing is along a subset that’s not too
complicated. Second, arbitrary complexes may be attached to the manifold,
so long as the gluing is along a finite set. These complexes are collectively
the “ornaments” in the following definition.
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Definition 2. We say that a 2-dimensional ∆-complex ∆ is a manifold
with fins and ornaments if there exists a subcomplex Σ, the manifold, sub-
complexes F1, . . . , Fn, the fins, and a subcomplex O, the ornaments, such
that:

(1) We have a decomposition ∆ = Σ ∪ F1 ∪ . . . ∪ Fn ∪O.
(2) Σ is homeomorphic to a 2-dimensional topological manifold.
(3) For any i, Fi is contractible and Fi ∩ Σ is a path.
(4) For any i > j, Fj ∩Fi is a subset of the endpoints of the path Fi ∩Σ.
(5) The intersection O ∩ (Σ ∪ F1 ∪ · · ·Fn) is a finite set of points.

If the manifold Σ has negative Euler characteristic, we call ∆ a hyperbolic
manifold with fins and ornaments and if the subcomplex O is empty, then
we call ∆ a manifold with fins.

Theorem 3. If ∆ is a hyperbolic manifold with fins and ornaments, then
there is no degeneration with dual complex ∆.

The obstruction to having the dual complex of a degeneration be a hyper-
bolic manifold with fins and ornaments is in lifting the dual complex to a
tropical complex. A tropical complex is ∆-complex, together with the inter-
section numbers of the 1-dimensional strata inside the 2-dimensional strata,
which are called the structure constants of the tropical complex [Car13].

Theorem 4. If ∆ is a hyperbolic manifold with fins and ornaments, then
there is no tropical complex with ∆ as its underlying topological space.

There are two characteristics of the special fiber of a degeneration which
are incorporated into the axioms of a tropical complex. The first is that the
special fiber is principal which gives a relationship among the intersection
numbers with a fixed curve. The second is that Hodge index theorem, which
restricts the possible intersection matrices of a fixed surface in the special
fiber.

Both axioms of a tropical complex are necessary in the proof of the
obstruction. Without the condition coming from the Hodge index theorem,
the object would only be a weak tropical complex, and any ∆-complex
lifts to a weak tropical complex. For example, if ∆ is homeomorphic to a
topological manifold, then choosing all structure constants equal to 1 gives a
weak tropical complex, but this will not be a tropical complex if χ(∆) < 0.

On the other hand, Kollár has shown that any finite n-dimensional simpli-
cial complex is realizable as the dual complex of a simple normal crossing
divisor [Kol14, Thm. 1], but such a divisor would not give a tropical complex
because the divisor is not necessarily principal. However, when connected,
such a divisor can be realized as the exceptional locus of the resolution an
normal, isolated singularity [Kol14, Thm. 2]. Thus, we see Theorem 3 as an
example of how the global geometry of a smooth algebraic variety is more
restricted than the local geometry of a singularity, in line with [KK14].

We also note that unlike the cases in Theorem 1, topological surfaces with
non-negative Euler characteristic are all possible as homeomorphism types of



EXCLUDED HOMEOMORPHISM TYPES FOR DUAL COMPLEXES OF SURFACES 3

degenerations. In particular, the 2-sphere, the real projective plane, the torus,
and the Klein bottle appear as degenerations of K3 surfaces, Enriques surfaces,
Abelian surfaces, and bielliptic surfaces respectively. In fact, a partial
converse is possible in that the dual complexes of such degenerations have
been classified by results of Kulikov, Persson, Pinkham, and Morrison [Kul77,
Per77, PP81, Mor81]. Note that topological surfaces of non-negative Euler
characteristic all arose from degenerations of varieties of Kodaira dimension 0.
However, these classification results would already suffice to prove Theorem 1
if we assumed that the general fiber had Kodaira dimension 0.

1. Tropical complexes

We begin by recalling some of the basic properties of tropical complexes,
as introduced in [Car13]. In short, a tropical complex is a ∆-complex,
augmented with integers, called the structure constants, and satisfying certain
hypotheses [Car13, Def. 2.1] In this paper, we will deal exclusively with 2-
dimensional tropical complexes, which we will denote tropical surfaces.

The primary importance of the structure constants for us will be that
it leads to a sheaf A of affine linear functions on a tropical surface. On
the interior of each simplex, a local section of A is exactly an R-valued
affine linear function with integral slopes, but the definition more generally
depends on the structure constants. All constant functions are affine linear,
and if we denote by D the quotient A/R, where R is the sheaf of locally
constant R-valued functions, then we have a long exact sequence in sheaf
cohomology [Car15, Sec. 3]:

(1) 0→ H0(∆,R)→ H0(∆,A)→ H0(∆,D)→ H1(∆,R)→ · · ·

One of the main results from [Car15] is the following:

Proposition 5 (Prop. 4.4 in [Car15]). If ∆ is a tropical surface which is
locally connected through codimension 1, the R-span of the image of the
morphism H0(∆,D)→ H1(∆,R) has codimension at most 1 in H1(∆,R).

In Proposition 5, locally connected through codimension 1 means that the
link of each vertex is connected.

In [Car13, Sec. 2], tropical complexes are constructed from regular semi-
stable degenerations over discrete valuation rings. Although we work over
a possibly non-discrete valuation ring, all the data of a tropical complex
can be obtained from the special fiber, which is a reduced simple normal
crossing scheme over the residue field of R. However, even for regular
degenerations over a discrete valuation ring, getting a tropical complex
requires an additional technical condition of robustness in dimension 2 [Car13,
Prop. 2.7], and without this condition we only get a weak tropical complex.
The distinction is that each vertex v of a weak tropical complex ∆ has a local
intersection matrix Mv, which is always symmetric, but has to have exactly
one positive eigenvalue for ∆ to be a tropical complex. Analogously, we
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get weak tropical complexes from degenerations over non-discrete valuation
rings.

Proposition 6. The special fiber of any degeneration X yields a weak tropical
complex ∆ such that the local intersection matrix Mv has at most one positive
eigenvalue for each vertex v of ∆.

Proof. Recall from [Car13, Def. 2.1] or [Car15, Def. 2.1] that in order for the
dual complex ∆ with structure constants from the intersection numbers to be
a weak tropical complex, we need that for any edge e of ∆, with endpoints v
and w, the structure coefficients satisfy the equality:

(2) α(v, e) + α(w, e) = deg(e).

Let Ce be the curve corresponding to e in the special fiber of X, and by our
semistability condition, on a Zariski open neighborhood meeting Ce, there is
an étale map to SpecR[x, y, z]/〈xy − π〉 for some element π in the maximal
ideal of R. Then, the principal Cartier divisor defined by π can be written,
at least in a neighborhood of Ce, as the union of Cartier divisors, each of
which is supported on an irreducible component of the special fiber of X. For
example, in the above chart, the functions x and y pull back to give defining
equations for each of the components containing Ce.

Thus, using linearity of the intersection product [Gub03, Prop. 5.9(b)],
we can split up the intersection of the principal divisor defined by π with
the curve Ce into terms coming from the components of the special fiber
of X. For components of the special fiber which don’t contain Ce, if we
pull back to Ce we get a Cartier divisor equal to the points of intersection,
with multiplicities equal to 1. Thus, the degree of the intersection of such
a Cartier divisor with Ce is equal to the number of points of intersection
by the projection formula [Gub03, Prop. 5.9(c)]. The total degree for all
components which don’t contain Ce gives the right-hand side of (2).

Now consider the two components Cv and Cw containing Ce. If we pull
back the Cartier divisor supported on Cv to Cw then we get the divisor Ce

on Cw. The self-intersection of Ce is −α(v, e) by the definition of the struc-
ture constants. Thus, using the projection formula again, the components
containing Ce contribute a cycle of degree equal to −α(v, e)−α(w, e), so the
equality (2) follows because π obviously defines a principal divisor.

Finally, as in [Car13, Sec. 2], the local intersection matrix Mv records the
intersection theory on the surface of the special fiber corresponding to v,
restricted to curves of the special fiber. By the Hodge index theorem, this
matrix can have at most one positive eigenvalue. �

One approach to obtaining a tropical complex instead of a weak tropical
complex is Proposition 2.9 in [Car13], which shows that for degenerations
with projective components, robustness can be obtained by appropriate blow-
ups. While this proposition could be adapted to the case of non-discrete
valuations, while also keeping track of the effect on the underlying topological
space, it is more convenient to perform the modification combinatorially:
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Lemma 7. Let ∆ be a 2-dimensional weak tropical complex and suppose
that for each vertex v of ∆, the local intersection matrix Mv has at most one
positive eigenvalue. Then, there exists a tropical surface ∆′ such that the
underlying topological space of ∆′ is formed by attaching a finite number of
2-simplices to edges of ∆.

Proof. We suppose that v is a vertex of ∆ such that Mv has no positive
eigenvalues, i.e. it is negative definite. Let e be an edge containing v and
let w be the other endpoint of e. We attach an additional 2-simplex onto e
and label the new vertex u′, with the new edges e′v and e′w. We use v′, w′

and e′ to denote the representatives of v, w, and e in the new weak tropical
complex ∆′. We assign the coefficients on ∆′ to be the same as on ∆, except
that:

α(w′, e′) = α(w, e) α(v′, e′) = α(v, e) + 1

α(w′, e′w) = 0 α(u′, e′w) = 1

α(v′, e′v) = 2 α(u′, e′v) = −1

Then one can check that Mv′ has one more positive eigenvalue than Mv, Mw′

has the same number as Mw and Mu′ has exactly one positive eigenvalue. By
repeating this process, we can construct the desired tropical complex ∆′. �

2. Proof of the main theorems

The crux of Theorem 4 and thus of Theorem 3 is the following lemma:

Lemma 8. Let ∆ be a tropical surface whose underlying ∆-complex is a
manifold with fins and is connected through codimension 1. If s is a 2-
dimensional simplex contained in the manifold subcomplex of ∆, and Us

denotes the interior of s, then the restriction map

H0(∆,D)→ H0(Us,D) ∼= Z2

is injective.

Proof. Note that the isomorphism H0(Us,D) ∼= Z2 holds because affine linear
functions on Us are equivalent to affine linear functions with integral slopes
on a standard simplex in R2. Thus, A restricted to Us is isomorphic to the
locally constant sheaf with values in R×Z2, and the quotient sheaf D = A/R
is isomorphic to Z2.

Now, we let Σ and F1, . . . , Fn denote the manifold and fins of the simplicial
complex, as in Definition 2. We suppose ω a global section of D such that
the restriction of ω to Us is trivial, and we want to show that ω is trivial.
We start with V = Us and then we’ll expand the open set V until it is all
of ∆. At each step, V will either be disjoint from, or contain, each fin Fi, so
the boundary of V will be contained in Σ.

First suppose that there exists an edge e in the boundary of V such that
e is not contained in any of the fins. Let f denote the 2-simplex bordering e
whose interior is in V and let f ′ denote the 2-simplex on the other side of e.
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Then, the construction of affine linear functions on a tropical complex [Car13,
Constr. 4.2] identifies the union of the interiors of f , f ′, and e with an open
subset of R2, and the sections of A are exactly affine linear functions with
integral slope on this set. As above, A and D are therefore locally constant
sheaves with values in R× Z2 and Z2 respectively. Thus, we can expand V
to include the interiors of e and f ′, where ω is also zero.

Second, we assume that every edge in the boundary of V is contained
in some Σ ∩ Fi. Let i be the maximal index such that Fi intersects the
boundary of V . Then, the entire path Σ ∩ Fi must be in the boundary of V
or else there would be a fin Fj with j < i intersecting Fi not at its endpoint,
which would contradict Definition 2. In particular, ω must be constant along
Σ ∩ Fi.

Let Ãi be the sheaf of piecewise linear functions on ∆ whose associated

divisors are contained in Σ∩Fi. If we let D̃i denote the quotient sheaf Ãi/R
on ∆, then we can construct a global section ω̃i of D̃i which is equal to ω
on Fi, but identically zero away from Fi. Consider the long exact sequence

of cohomology associated to the quotient D̃i, analogous to (1):

0→ H0(∆,R)→ H0(∆, Ãi)→ H0(∆, D̃i)→ H1(∆,R)→

Since ω̃i is only non-trivial on Fi, which is contractible, the image of ω̃i in

H1(∆,R) is trivial, so ω̃i lifts to an element of H0(∆, Ãi), which we also
denote by ω̃i and we choose the representative such that ω̃i is zero on Σ.

If ω̃i is non-constant, then it must have a minimum value strictly less
than zero or maximum value strictly greater than zero. Then, it would
have its minimum or maximum, respectively, on Fi \ Σ. In either case, we
apply Proposition 2.8 from [Car15], which implies that the divisor of ω̃i is
non-trivial in a neighborhood of where it achieves its minimum or maximum.

This contradicts our definition of a section of the sheaf Ãi, so we conclude
that ω̃i is identically zero. Thus, ω is identically zero on Fi, so we can
expand V to include Fi \ Σ.

We’ve now shown that for each edge e of Σ ∩ Fi, the section ω is zero on
all but one simplex containing e, namely the simplex in Σ on the other side
from V . By the condition of being the quotient of an affine linear function
means that ω must also be zero on this simplex. Thus, we further expand V
to also include the interiors of all 2-simplices containing Σ ∩ Fi.

At the end, we will have that ω is zero on an open set V which contains
the interior of every 2-simplex in ∆ and since affine linear functions are
continuous by definition, this means that ω is zero, which finishes the proof
of the lemma. �

We use Lemma 8 to prove the following strengthening of Theorem 4.

Theorem 9. If ∆ is a hyperbolic manifold with fins and ornaments, then
there is no weak tropical complex, with ∆ as its underlying topological space,
and such that for every vertex v of ∆, Mv has at most one positive eigenvalue.
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Proof. Suppose that ∆ is a weak tropical surface whose underlying ∆-complex
is as in the theorem statement. We can assume that when decomposing ∆
as in Definition 2, the subcomplex of ornaments O is maximal, so that if we
let ∆′ denote the subcomplex consisting of just the manifold and fins, then
∆′ is locally connected through codimension 1. Then, taking the restriction
of the structure constants from ∆, we get that ∆′ has the structure of a
weak tropical complex, because the local structure around each edge of ∆′ is
unchanged. Moreover, at each vertex v of ∆′, the local intersection matrix M ′

v

is a submatrix of the corresponding matrix Mv for ∆. Therefore, M ′
v also

has at most one positive eigenvalue.
Next, we apply Lemma 7 to transform ∆′ into a tropical surface ∆′′ by

gluing simplices onto edges of ∆′. Whenever we glue a simplex onto an edge e
which is contained in one of the fins Fi ⊂ ∆′, we can include that simplex in
the fin, which remains contractible and its intersection with the manifold Σ is
unchanged. If we glue a simplex onto an edge e contained in the manifold Σ,
then the simplex forms a new fin Fn+1, numbered after all the other fins.
Since Fn+1 ∩ Σ is a single edge, the intersection of Fn+1 with any other fin
will be a subset of the endpoints of this edge. Thus, ∆′′ is still a hyperbolic
manifold with fins. Finally, if the manifold Σ ⊂ ∆′′ is not orientable, we can
replace ∆′′ with its oriented cover of ∆′′ so that χ(∆′′) ≤ −2.

Now we consider the cohomology group H1(∆′′,D) to get our contradiction.
By Lemma 8, H0(∆′′,D) is a subgroup of Z2, so it is a free Abelian group
of rank at most 2. On the other hand, if ∆′′ is homotopy equivalent to a
manifold Σ with χ(∆′′) ≤ −2, then

dimRH
1(∆′′,R) = 2− χ(∆′′) ≥ 4.

Moreover, by Proposition 5, the R-span of the image of H1(∆′′,D) has
codimension at most 1 in H1(∆′′,R), so the rank of H1(∆′′,D) is at least
dimRH

1(∆′′,R)− 1 ≥ 3. Thus, we have a contradiction regarding the rank
of H1(∆′′,D), so the weak tropical surface ∆ cannot exist. �

Proof of Theorem 3. Suppose X is a strict semistable degeneration whose
dual complex ∆ is a hyperbolic manifold with fins and ornaments. Then, by
Proposition 6, ∆ has the structure of a weak tropical complex such that the
matrix Mv has at most one positive eigenvalue for every vertex v. However,
by Theorem 9, such a weak tropical complex cannot exist, so we conclude
that X cannot exist. �
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