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1 Introduction

The purpose of this text is to describe roughly a joint work with Amaury Thuil-
lier, which is still in progress. It consists of a systematic study of the subsets of
Berkovich spaces that ”locally look like finite polyhedral complexes”. It is par-
tially motivated by Thuillier’s current work on the homotopy type of Berkovich
spaces, for which a better understanding of the behavior of those subsets has
turned out to be necessary.

Let us give some precisions about the objects involved; all analytic spaces
we consider are defined over a fixed ground field k. Following Berkovich, we will
use the multiplicative notation: in what follows, a polyhedron will be a subset
of pRˆ`qn isomorphic through the logarithm pRˆ`qn » Rn to a finite union of
simplices with rational slopes. A map between two such polyhedra will be said
to be PL (resp. Z-PL) if it is continuous and piecewise affine with rational (resp.
integral) linear parts.

One can take polyhedral complexes as building blocks for defining the cate-
gory of abstract PL spaces (resp. Z-PL spaces). Roughly speaking, those spaces
are defined using polyhedral atlases, consisting of coverings by polyhedral charts
with PL (resp. Z-PL) transition isomorphisms, but the precise construction is
slightly technical, because those atlases consist of compact (and usually not
open) pieces; the interested reader may find details in [2], see also [5].

Now let us say that a locally closed subset S of an analytic space X is a
skeleton if there exists a PL-structure on S having the following properties.

1) For every analytic domain Y of X and every invertible function f on Y ,
the intersection S X Y is a PL-subspace of P and the restriction of |f to S X Y
is PL.

2) There exists a polyhedral atlas pPiq on S and, for every i, an analytic
domain Xi of X containing Pi and invertible functions fi1, . . . , fini

on Xi such
that p|fij |qj induces a PL-isomorphism between Pi and a polyhedron of pRˆ`qni .

It can easily be shown that such a structure is necessarily unique. Hence
a skeleton of X inherits a canonical PL-structure, which by definition can be
described purely in terms of the analytic structure of X.

The archetypal example of a skeleton is the subset Sn :“ tηrurPpRˆ
`
qn

of

Gn,anm , where ηr is for every r the point defined by the semi-norm

ÿ

aIT
I ÞÑ max |aI | ¨ r

I .
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Let us give another example. Let X be a polystable formal scheme over k˝.
The combinatorics of the singularities of the special fiber of X can be encoded
in an abstract polyhedron, which has been proved by Berkovich in [2] to be
naturally PL-isomorphic to a skeleton SpXq of Xη (he has moreover established
that Xη admits a deformation retraction to SpXq).

The author has proved ([3], [5]) the following theorem.

Theorem 1. Let n P N, let X be a k-analytic space of dimension ď n, and
let ϕ1, . . . , ϕm be morphisms from X to Gnm. Then the union

Ť

i ϕ
´1
i pSnq is

a skeleton; for every i, the map ϕ´1
i pSnq Ñ Sn is a piecewise-immersion of

PL-spaces.

Let us say a few words about the proof; its core consists in proving the
result when m “ 1 (one uses some trick to reduce to this case). One can then
either use de Jong’s alteration in the spirit of Berkovich’s work ([1], [2]), which
was done in [3]. Or, like in [5], one can use model-theoretic arguments (based
upon Hrushovski and Loeser’s work [7]) to establish the following result, from
which theorem 1 follows through standard algebraization procedures: let k be
any valued field, and let L be a finite extension of kpT1, . . . , Tnq; there exists
a finite subset of L that separates the extensions of any Gauss valuation on
kpT1, . . . , Tnq. Here a Gauss valuation is a valuation given of the form

ř

aIT
I ÞÑ

max |aI | ¨ r
I for r an n-uple of elements of an abelian ordered group containing

|kˆ|.

Let X be a k-analytic space of dimension n, and let pXiq be a G-covering of
X by analytic domains. For every i, les pϕijqj be a finite family of morphisms
from Xi to Gn,anm , and set Σi “

Ť

j ϕ
´1
ij pSnq (it is a skeleton by theorem 1). If

S is a subset of X such that S X Σi is a PL-subspace of Σi for every i, then S
is easily seen to be a skeleton. Such a skeleton will be called nice in the sequel.

2 Integral structures on, and direct images of,
skeleta

In our work in progress with Thuillier, we have established the following results
(their proofs have been completely written down).

Theorem 2. Any nice skeleton inherits a natural Z-PL structure.

Theorem 3. Let n and d be two integers, let Y be an n-dimensional analytic
space, let X be a d-dimensional analytic space, and let ϕ : Y Ñ X be a compact
morphism of pure dimension n´ d. Then if S is a nice skeleton of Y , its image
ϕpSq is a nice skeleton of X.

Let us quickly mention the main ingredients of the proofs. For theorem 2,
we use a weak desingularisation theorem by Knaf and Kuhlmann [10], namely
the local uniformisation of Abhyankar valuations on algebraic varieties, whic
we apply at the residue field level. This allows us to reduce to the case of the
skeleton Sn of Gn,anm whose integral structure is the obvious one.

As far as theorem 3 is concerned, its proof is essentially based upon a descrip-
tion of germs of nice skeleta at a given point x of an analytic space X, in terms

of Temkin’s graded reduction ČpX,xq : such a germ is given by a quasi-compact
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subspace of ČpX,xq consisting of ”monomial valuations”. The core of the work is
the precise definition of those ”residual skeleta” and the construction of the dic-
tionary between germs of nice skeleta and residual skeleta, which uses Temkin’s
theory and quite elementary model theory, applied to the theory of divisible
abelian ordered group (a compact nice skeleton can be seen as a definable ob-
ject in this theory). The proof of th. 3 is thereafter slightly formal: one proves
using basic facts from valuation-theory together with (quasi)-compactness argu-

ments that for every y P S the image of the residual skeleton ČpS, yq is a residual

skeleton of ČpX,ϕpyqq; then our dictionary allows to lift this assertion at the level
of germs of nice skeleta, hence to conclude because the property of being a nice
skeleton is local.

3 The case of piecewise-monomial skeleta

Our current goal (which is not yet completely achieved) is now to extend those
results to the case of piecewise-monomial skeleta. Let us first quickly explain
what those objects are.

By its very definition, a subset of pRˆ`qn is a polyhedron if it can be defined by
finitely many non-strict inequalities between monomial functions with integral
exponents, which can always be taken non-negative. But such a condition also
makes sense for a subset of Rn`, and can thus be used, in a way very similar
to what we followed concerning PL spaces, to define the categories of PM and
Z-PM spaces (PM stands for piecewise monomial); note that the multiplicative
notation is much more convenient than the additive one (which would require
to add `8 or ´8 to R) for such a purpose.

We can then define a PM-skeleta of a Berkovich space, as we did for skeleta.
The archetypal example of a PM-skeleton is the subset S1n of An,an that consists
of all points of the form ηr for r P Rn`. We have proved the following analogue
of theorem 2.

Theorem 4. Let X be an analytic space and let pϕi : X Ñ Ani,anq1ďiďm be
a family of zero-dimensional morphisms. Then the union

Ť

ϕ´1
i pS

1
ni
q is a

PM-skeleton. It inherits a natural Z-PM structure, and for every i the map
ϕ´1
i pS

1
ni
q Ñ S1ni

is a piecewise immersion of PM-spaces.

Before saying a few words about its proof, let us mention that we are cur-
rently trying to establish an analogue of theorem 3 too, but we face some techni-
cal problems and the situation is much more complicated than what we expected
(theorem 4 allows to define the notion of a nice PM-skeleton of a Berkovich
space, but this notion does not seem to be stable under compact direct images,
contrary to what happens for skeleta; nevertheless, it seems plausible that the
image of a nice PM-skeleton under a compact map is still a PM-skeleton).

Some words about the proof of theorem 4 and the space uX

Contrary to what we thought at the very beginning, it seems that we do not
need to use theorem 2 in order to prove theorem 4: we have a direct proof of
the latter, which will then provide a new proof of theorem 2.
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Our proof of theorem 4 is mainly valuation-theoretic. But we deal with
piecewise-monomial skeletta, which can meet proper Zariski-closed subsets of
the ambiant space (for example, S1n meets all coordinate hyperplanes, contrary
to Sn, all whose points are Zariski-generic on Gnm). This prevents us algebraiz-
ing the situation, and then using tools from algebraic geometry and/or from
the model-theory of valued fields. Hence we have to work with valuations on
arbitrary equi-characteristic excellent local rings, which requires a lot of com-
mutative algebra and relative algebraic geometry over such a ring.

For instance, we prove that if A is such a ring, which we assume to be
a domain, then for every Abhyankar valuation |.| on Spec A centered at the
closed point, and supported at the generic point, the valued field pFrac A, |.|q
is stable (i.e every finite extension of it is defectless). Our proof follows the
general philosophy outlined for example in [12]: reduction to the height 1 case
by some dévissage, completion, and then use of the corresponding result for
Abhyankar points of Berkovich spaces – which itself can be easily reduced to the
corresponding result for algebraic Abhyankar valuation, which is now classical
(Kuhlmann, [11]). This stability result is crucial, and in some sense replaces the
aforementioned model-theoretic arguments of [5] (but note that the stability of
algebraic Abhyankar valuations can also be proved by similar model-theoretic
methods, see [6]).

But of course, looking at what happens for a particular valuation can not be
sufficient; one needs at some point more global tameness and/or finiteness result.
For that purpose, we have introduced a variant of the Zariski-Riemann space,
which we will now describe. Let X “ M pAq be an affinoid space. Following
Kedlaya, let us call a reified valuation the datum of a valuation on A (with
possibly non-trivial kernel) and of an order-preserving embedding of Rˆ` into its
group. There is a natural notion of equivalence of such reified valuations, and
we define uX as the set of all reified valuation x on A such that |fpxq| ď ||f ||
for every f P A (here ||.|| is the spectral norm). Note than contrary to Kedlaya
in loc. cit, we do not require those valuations to be continuous. For example,
assume that A “ ktT u. The valuation x obtained by composing the vanishing
order at the origin and the given absolute value on k belongs to uX, but is not
continuous. The element |T pxq| is infinitely closed to zero (but still positive)
with respect to Rˆ`.

Remark. It is essential for our purpose to allow such valuations because we
need to have a control on what happens in the neighborhood of a proper Zariski-
closed subset of X. For example if X is a nodal curve, then every branch at
the singularity will give rise to a point of uX (by composing the corresponding
discrete valuation with the absolute value of the residue field).

We will now end this short report by simply mentioning some properties of
uX which play a crucial role in our proof.

Let us say that a subset of X (resp. uX) is semi-algebraic if it can be defined
by a boolean combination of inequalities |f | ’ λ|g| with f and g in A, with
λ P R` and with ’P tă,ą,ď,ěu. We endow uX with the topology generated by
the semi-algebraic subsets, for which it is easily shown –this is slightly formal
– to be compact; its semi-algebraic subsets are then precisely its compact-open
subsets, and any ultra-filter of semi-algebraic subsets of uX is principal.
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There is a natural (not continuous !) embedding X ãÑ uX, whose image
is dense: this is essentially the rephrasing of a result proved by Huber in [8].
This implies that F ÞÑ F X X induces a bijection between the set of semi-
algebraic subsets of uX and the set of semi-algebraic subsets of X; hence uX can
be interpreted as the set of ultra-filters of semi-algebraic subsets of X.

Now let V be an affinoid domain of X. It is semi-algebraic by Gerritzen-
Grauert’s theorem, hence corresponds to a semi-algebraic subset V

ŇX of uX. On
the other hand, the space uV is well-defined, and there is a natural continous
map uV Ñ uX. One proves easily (using descriptions in terms of ultra-filters)
that its image is precisely V

ŇX , but in general this map is not injective – this the
typical example of the problems we face.

It is not difficult to give a counter-example to injectivity: assume that X is
the unit bi-disc, that V is a closed disc of biradius pr, 1q with r ă 1, and that
f P ktT {ru has radius of convergence exactly equal to r, and spectral norm ď 1.
Let Y be the Zariski-closed subset of V defined by the equation T2 “ fpT1q (it
can be identified with the one-dimensional disc of radius r, through the map
pId, fq) ; let η be the unique point of the Shilov boundary of Y . We can see η
as belonging to uV , and its image on uX is nothing but η, seen as an element of
X ãÑ uX.

Let η` be the composition of the vanishing order along Y and of the valuation
η. It belongs to uV . Let g P OpV q. If g vanishes along Y then |gpηq`| is
infinitely closed to zero (but non-zero if g ‰ 0, e.g. g “ T2 ´ fpT1q); if not
then |gpη`q| “ |gpηq|. It is not difficult to prove that Y is Zariski-dense in X
(because the radius of f is exactly r, which prevents Y being extended to curve
around η); hence for any function g on X one has |gpη`q| “ |gpηq|. Therefore
the image of η` on uX is also equal to η.

But in fact, as far as the valuation we consider are Abhyankar (and being
interested in skeleta, we basically more or less only have to deal with Abhyankar
valuations), this problem can not happen. Indeed, we prove that if a point ξ of
V

ŇX is Abhyankar, then it has a unique pre-image ζ on uV ; moreover, ζ has the
same residue field and the same value group as those of ξ.

The proof is technically involved; it uses the fact that the map Spec OpV q Ñ
Spec OpXq is regular (due to the author, see [4]), and also a result by Raynaud
(cf. prop. 21.4.9 in the Errata of EGA IV.4) giving a necessary and sufficient
condition, given a flat morphism Y Ñ X between noetherian schemes, for a
Cartier divisor on Y to be the pull-back of a Cartier divisor on X.
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