Tropical and nonarchimedean analytic geometry of curves

Sam Payne

August 11, 2011

Joint work with

- Matt Baker
- Joe Rabinoff

Tropicalization

- K is a valued field, with valuation $\nu: K^* \to \mathbb{R}$.
- X is a subvariety of \mathbb{G}_m^n over K.
- Trop(X) $\subset \mathbb{R}^n$ is the set of valuations of points of X.

Tropicalization

- K is a valued field, with valuation $\nu: K^* \to \mathbb{R}$.
- X is a subvariety of \mathbb{G}_m^n over K.
- Trop(X) $\subset \mathbb{R}^n$ is the set of valuations of points of X.

For L|K an extension of valued fields, and $x=(x_1,\ldots,x_n)$ a point with coordinates in L, let

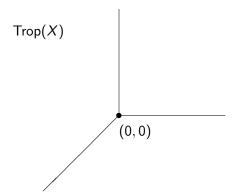
$$\mathsf{Trop}(x) = (\nu(x_1), \dots, \nu(x_n)).$$

Definition

$$\mathsf{Trop}(X) = \{\mathsf{Trop}(x) \mid x \in X(L) \text{ for some } L | K \}.$$

Example: (x + y + 1 = 0)

Let $X \subset \mathbb{G}_m^2$ be the "line" cut out by (x+y+1)=0.



Relation to Gröbner theory

Regular functions on $T = \mathbb{G}_m^n$ are Laurent polynomials:

$$a_1x^{u_1}+\cdots+a_rx^{u_r}$$

with $a_i \in K$ and $u_i \in \mathbb{Z}^n$.

Definition

The w-weight of a monomial ax^u is

$$\operatorname{wt}(ax^u) = \nu(a) + \langle u, w \rangle.$$

Initial degenerations of T

Let R_w be the ring generated by monomials of nonnegative w-weight.

Definition

The tropical integral model of T at w is

$$\mathcal{T}_w = \operatorname{Spec}(R_w)$$

- Scheme over the valuation ring $R \subset K$ with general fiber T_K .
- Special fiber in $_w$ T is a torsor over T_k .

Here, $k = R/\mathfrak{m}$ is the residue field.

Initial degenerations of X

Let \mathcal{X}_w be the closure of X in \mathcal{T}_w .

Definition

The initial degeneration in $_w X$ is the special fiber of \mathcal{X}_w .

Roughly speaking, $\operatorname{in}_w X$ is cut out by "w-initial forms" of Laurent polynomials in I_X .

Initial degenerations of X

Let \mathcal{X}_w be the closure of X in \mathcal{T}_w .

Definition

The initial degeneration in $_w X$ is the special fiber of \mathcal{X}_w .

Roughly speaking, $\operatorname{in}_w X$ is cut out by "w-initial forms" of Laurent polynomials in I_X .

- \mathcal{X}_w is not proper, so the closure of a point in the general fiber may not meet the special fiber.
- If the initial form of some $f \in I_X$ is a monomial then $in_w X$ is empty.
- The closure of a point $x \in X(K)$ meets in_w X if and only if Trop(x) = w.

The "Fundamental Theorem"

Theorem

- **I** Trop(X) is the set of $w \in \mathbb{R}^n$ such that in X is not empty.
- 2 It is the underlying set of a connected polyhedral complex of pure dimension $\dim X$.
- This polyhedral complex can be chosen such that all faces have rational slope.

The "Fundamental Theorem"

Theorem

- **I** Trop(X) is the set of $w \in \mathbb{R}^n$ such that in X is not empty.
- 2 It is the underlying set of a connected polyhedral complex of pure dimension dim *X*.
- This polyhedral complex can be chosen such that all faces have rational slope.
- Versions of this theorem proved by Bergman (1971), Bieri and Groves (1984), Kapranov (2000), Sturmfels (2002), Speyer (2005), and Draisma (2008).

The "Fundamental Theorem"

Theorem

- **I** Trop(X) is the set of $w \in \mathbb{R}^n$ such that $\text{in}_w X$ is not empty.
- 2 It is the underlying set of a connected polyhedral complex of pure dimension dim *X*.
- This polyhedral complex can be chosen such that all faces have rational slope.
- Versions of this theorem proved by Bergman (1971), Bieri and Groves (1984), Kapranov (2000), Sturmfels (2002), Speyer (2005), and Draisma (2008).
- Also follows from elimination of quantifiers for algebraically closed valued fields, proved by Robinson (1956).

A brief history. 1600–1980.

What is tropical geometry, and where does it come from? **Newton polyhedra.**

- Newton polygons; Newton's method for solving polynomials. Newton (late 1600s).
- Newton's method over *p*-adic fields, and other valued fields. Hensel (1904), Dumas (1906), Ostrowski (1935).
- Nondegeneracy with respect to Newton polyhedra, and applications to sparse intersections, hypersurfaces, singularities. Arnold (1975), Bernstein (1975), Kouchnirenko (1975), Khovanskii (1976), Varchenko (1976).

A brief history. 1970-2000.

What is tropical geometry, and where does it come from?

Limits of logarithms, idempotent algebras, and computational applications.

- Logarithmic limit sets of algebraic varieties. Bergman (1971),
 Bieri and Groves (1984).
- "Tropical semirings" and applications to optimization and computer science. Simon (1988).
- Amoebas of real and complex varieties. Gelfand, Kapranov, and Zelevinsky (1994).
- Idempotent analysis and dequantization. Litvinov and Maslov (1998).
- Dequantization of algebraic geometry on logarithmic paper.
 Viro (2000).

A brief history. Early 2000s.

Tropical geometry emerges as a field of research.

- Nonarchimedean amoebas. Kapranov (2000), Kontsevich (2000).
- Connections to Gröbner theory. Sturmfels (2002).
- Complex amoebas and Monge-Ampère measures. Passare and Rullgård (2004).
- Complex enumerative geometry of curves. Mikhalkin (2005).
- Real enumerative geometry of curves. Itenberg, Kharlamov, and Shustin (2003).
- The tropical Grassmannian, and Bergman fans of matroids.
 Speyer and Sturmfels (2004), Ardila and Klivans (2006)

A brief history. Late 2000s

More recent developments.

- Tropical proofs of WDVV and Caporaso-Harris formulas.
 Gathmann and Markwig (2007, 2008).
- Tropical Riemann-Roch, Abel-Jacobi, and Torelli theorems. Baker and Norine (2007), Gathmann and Kerber (2008), Mikhalkin and Zharkov (2008), Caporaso and Viviani (2010), Branetti, Melo, and Viviani (2011).
- New results in enumerative geometry of curves. Brugallé and Mikhalkin (2007), Fomin and Mikhalkin (2010).
- Discriminants, implicitization, and computational algebraic geometry. Bogart, Jensen, Speyer, Sturmfels, and Thomas (2007), Dickenstein, Feichtner, and Sturmfels (2007), Sturmfels, Tevelev, and Yu (2007), Cueto (2011).

A brief history. Late 2000s

Connections with other fields of mathematics.

- Algebraic dynamics. Einsiedler, Kapranov, and Lind (2006).
- Number theory, Bogomolov's conjecture, and canonical subgroups. Gubler (2007), Rabinoff (2010).
- Birational geometry and minimal model program. Tevelev (2005), Hacking, Keel, and Tevelev (2006, 2009).
- Brill-Noether theory. Baker (2008), Cools, Draisma, P, and Robeva (2010), Caporaso (2011).
- Hodge structures and weight filtrations. Hacking (2008),
 Helm and Katz (2008), P (2009), Katz and Stapledon (2010).
- Mirror symmetry. Gross, Siebert, and Pandharipande (2010).

A maximally complete field

Fix $K = k((t^{\mathbb{R}}))$ field of transfinite series, with k algebraically closed. Elements of K are formal sums

$$a = \sum_{i \in \mathbb{R}} a_i t^i$$

with well-ordered support.

The field K is

- algebraically closed.
- complete with respect to $\nu(a) = \min\{i \in \mathbb{R} \mid a_i \neq 0\}$.
- lacksquare spherically complete, with value group $\mathbb R.$

Analytification

Let X be an affine variety over K, and set $\mathbb{R}_{\infty} = \mathbb{R} \cup \{+\infty\}$.

Definition

The analytification X_{an} is the set of valuations on K[X] that extend ν , with the topology induced from $\mathbb{R}_{\infty}^{K[X]}$.

Analytification

Let X be an affine variety over K, and set $\mathbb{R}_{\infty} = \mathbb{R} \cup \{+\infty\}$.

Definition

The analytification X_{an} is the set of valuations on K[X] that extend ν , with the topology induced from $\mathbb{R}_{\infty}^{K[X]}$.

Theorem (Berkovich 1990, Hrushovski and Loeser 2010)

- **1** X_{an} is Hausdorff, path connected, locally compact, and locally contractible.
- 2 X_{an} admits a strong deformation retract onto a finite simplicial complex.
- X_{an} contains X(K) as a dense, totally disconnected subset.

Example: Analytification of the affine line

Points of the analytic affine line.

Type I. Each point $x \in \mathbb{A}^1(K)$, gives a valuation η_x :

$$\eta_{\mathsf{X}}(f) = \nu(f(\mathsf{X})).$$

Example: Analytification of the affine line

Points of the analytic affine line.

Type I. Each point $x \in \mathbb{A}^1(K)$, gives a valuation η_x :

$$\eta_x(f) = \nu(f(x)).$$

Type II. Each disc of radius *r*

$$U_r(x) = \{ y \in \mathbb{A}^1(K) \mid \nu(y - x) \ge r \}.$$

gives a valuation:

$$\eta_{x,r}(f) = \min\{\nu(f(y) \mid y \in U_r(x))\}.$$

Example: Analytification of the affine line

Points of the analytic affine line.

Type I. Each point $x \in \mathbb{A}^1(K)$, gives a valuation η_x :

$$\eta_{\mathsf{X}}(f) = \nu(f(\mathsf{X})).$$

Type II. Each disc of radius r

$$U_r(x) = \{ y \in \mathbb{A}^1(K) \mid \nu(y - x) \ge r \}.$$

gives a valuation:

$$\eta_{x,r}(f) = \min\{\nu(f(y) \mid y \in U_r(x)\}.$$

Proposition (Berkovich 1990)

These are all of the points in \mathbb{A}^1_{an} .



Metric on the analytic affine line

Proposition

There is a unique metric on $\mathbb{A}^1_{an} \setminus \mathbb{A}^1(K)$ such that

$$d(\eta_{x,r},\eta_{x,R})=|R-r|.$$

With this metric, $\mathbb{A}^1_{an} \setminus \mathbb{A}^1(K)$ is a \mathbb{R} -tree.

Caution: The metric topology on $\mathbb{A}^1_{an} \setminus \mathbb{A}^1(K)$ is much finer than the subspace topology.

Tropicalization of analytic spaces

Suppose X is a subvariety of the torus T.

Proposition

The tropicalization map Trop : $X(K) \to \mathbb{R}^n$ extends to a proper, continuous, surjective map

$$X_{an} \to \mathsf{Trop}(X)$$
.

The map is given by $\text{Trop}(\eta) = (\eta(x_1), \dots, \eta(x_n)).$

Tropicalization of analytic spaces

Suppose X is a subvariety of the torus T.

Proposition

The tropicalization map Trop : $X(K) \to \mathbb{R}^n$ extends to a proper, continuous, surjective map

$$X_{an} \to \mathsf{Trop}(X)$$
.

The map is given by $Trop(\eta) = (\eta(x_1), \dots, \eta(x_n)).$

- The fibers of Trop are "affinoid analytic domains" of dimension equal to dim(X).
- The fiber over w has a formal model with special fiber in w X.

Global geometry

Tropicalization and analytification constructions extend naturally to varieties over K that are not necessarily affine.

- Global analytifications of varieties over *K*, given by gluing analytifications of affine open subsets.
- Global tropicalizations of subvarieties of toric varieties, stratified by tropicalizations of intersections with torus orbits.

Tropicalization of subvarieties of toric varieties

Let Δ be a fan in \mathbb{R}^n , with $Y(\Delta)$ the associated toric variety with dense torus T.

The associated tropical space $\mathbb{R}^n(\Delta)$ is a partial compactification of \mathbb{R}^n , stratified by linear spaces.

Tropicalization of subvarieties of toric varieties

Let Δ be a fan in \mathbb{R}^n , with $Y(\Delta)$ the associated toric variety with dense torus T.

The associated tropical space $\mathbb{R}^n(\Delta)$ is a partial compactification of \mathbb{R}^n , stratified by linear spaces.

For each subvariety $X \subset Y(\Delta)$ there is a canonical proper, continuous map Trop : $X_{an} \to \mathbb{R}^n(\Delta)$.

- The image Trop(X) meets each linear stratum in a finite polyhedral complex.
- If X meets the dense torus T, then Trop(X) is the closure of Trop(X ∩ T).

Metrics on tropicalizations of curves

If X is a curve in $Y(\Delta)$, then $Trop(X \cap T)$ is a connected union of finitely many segments and rays with rational slopes.

- The length of an embedded segment is the lattice length.
- The global metric on $Trop(X \cap T)$ is the shortest path metric.
- The tropicalization map from $X_{an} \setminus X(K)$ to Trop(X) is surjective, but very far from being an isometry (even on subsets where it restricts to a homeomorphism).

Functoriality Lemma

Fix a variety X over K. Let

$$\iota:X\hookrightarrow Y(\Delta)$$
 and $\iota':X\hookrightarrow Y(\Delta')$

be closed embeddings into toric varieties, and let

$$\varphi: Y(\Delta) \to Y(\Delta')$$

be an equivariant morphism of toric varieties.

Lemma

If $\varphi \circ \iota = \iota'$ then the induced "linear" function

$$\mathsf{Trop}(\varphi): \mathbb{R}^n(\Delta) \to \mathbb{R}^{n'}(\Delta')$$

maps Trop($\iota(X)$) surjectively onto Trop($\iota(X')$).

Limits of tropicalizations

Theorem (P 2009)

The induced map

$$X_{an} o \varprojlim_{\iota} \mathsf{Trop}(\iota(X))$$

is a homeomorphism.

Limits of tropicalizations

Theorem (P 2009)

The induced map

$$X_{an} o \varprojlim_{\iota} \mathsf{Trop}(\iota(X))$$

is a homeomorphism.

Theorem (Baker, P, and Rabinoff 2011)

If X is a curve, then the induced map

$$X_{an} \setminus X(K) o arprojlim_{\iota} \mathsf{Trop}(\iota(X) \cap T_{\iota})$$

is an isometry.

Semistable decomposition

Let X be a curve over K. Then X_{an} can be decomposed into pieces that locally look like pieces of the affine line.

- Open disc $D = \{ \eta \in \mathbb{A}^1_{an} \mid \eta(t) > 0 \}.$
- Open annulus $A(R)=\{\eta\in\mathbb{A}^1_{an}\mid R>\eta(t)>0\}.$

Theorem (Bosch and Lütkebohmert (1985), Temkin (2010))

There is a finite subset $V \subset X_{an} \setminus X(K)$ such that

$$X_{an} \setminus V \cong \coprod_{fin.} A(R_i) \coprod_{inf.} D$$

Metrics on analytic curves

Let X be a curve over K, and let $V \subset X_{an} \setminus X(K)$ be a semistable decomposition set.

The metrics on D and $A(R_i)$ induce a shortest path metric on $X_{an} \setminus X(K)$.

Proposition

The induced metric on $X_{an} \setminus X(K)$ is independent of all choices.

Skeletons

The annulus A(R) deformation retracts onto the open segment of length R

$$\Sigma_R = \{ \eta_{x,r} \mid R > r > 0 \}.$$

Definition

The skeleton $\Sigma(V)$ is the union of V and the open segments Σ_{R_i} .

Proposition

The skeleton $\Sigma(V)$ is a closed embedded metric subgraph in $X_{an} \setminus X(K)$.

A more precise isometry statement

Let X be a curve over K.

Theorem (Baker, P, and Rabinoff 2011)

For any finite embedded subgraph $\Gamma \subset X_{an} \setminus X(K)$ there exists an embedding $\iota : X \hookrightarrow Y(\Delta)$ such that

- 1 Trop maps Γ isometrically onto its image.
- **2** For each edge e in $Trop(\Gamma)$, the preimage $Trop^{-1}(e)$ is the disjoint union of e and an infinite collection of open discs, each of which is contracted by Trop.

Furthermore, the set of all such embeddings is stable and hence cofinal in the inverse system.

Eso es todo amigos

¡Muchas gracias por su paciencia!