A tropical approach to non-archimedean Arakelov theory

Walter Gubler

Universität Regensburg

4.2.2015

This is a report on joint work with Klaus Künnemann in

• [GK] W. Gubler, K. Künnemann: A tropical approach to non-archimedean Arakelov theory. arXiv:1406.7637

Further references:

- [Gu] W. Gubler: Forms and currents on the analytification of an algebraic variety (after Chambert–Loir and Ducros): arXiv:1303.7364
- [CD] A. Chambert-Loir, A. Ducros: Formes différentielles réelles et courants sur les espaces de Berkovich. arXiv: 1204.6277

X regular projective variety over number field K.

- Algebraic intersection theory → geometric information about X, e.g. degree.
- Arithmetic intersection theory with arithmetic information about *X*, e.g. *height*.
 - dim X = 1: Arakelov, Faltings
 - dim $X \ge 2$: Gillet-Soulé

Arithmetic intersection theory

Idea:

- Assume X has regular projective model $\mathfrak{X}/O_{\mathcal{K}}$.
- $X(\mathbb{C})$ complex manifold.
- g_Z Green current for cycle $Z : \bigoplus^{on X(\mathbb{C})} dd^c g_Z = [\omega_Z] \delta_Z$ for a differential form ω_Z . Here, $dd^c := \frac{i}{2\pi} \partial \overline{\partial}$ and δ_Z is the current of integration over $Z(\mathbb{C})$.
- (\mathfrak{Z}, g_Z) arithmetic cycle : $\iff \mathfrak{Z}$ cycle on \mathfrak{X} with generic fibre Z, g_Z Green current for Z.
- $f \in K(X)^{\times} \Rightarrow \widehat{div}(f) := (div(f), -\log |f|)$ is arithmetic cycle.
- arithmetic intersection product for (𝔅, g_Y) and (𝔅, g_Z) st Y intersects Z properly in X:

$$(\mathfrak{Z}, g_{Z}).(\mathfrak{Y}, g_{Y}) := (\mathfrak{Y}.\mathfrak{Z}, g_{Y} \wedge \delta_{Z} + \omega_{Y} \wedge g_{Z})$$

 $=:g_Y*g_Z$

- Need regular models (resolution of singularities is often unknown)
- Canonical heights (e.g. on abelian varieties) cannot be described as an arithmetic intersection number.

Dream

Use analytic spaces over K_v for $v \nmid \infty$ instead of models and a similar analytic theory of currents.

Tropical geometry and Lagerberg's superforms

• polyhedron Δ in \mathbb{R}^r :

$$\Delta := \bigcap_{i=1}^{N} \{ \omega \in \mathbb{R}^r | \langle u_i, \omega \rangle \ge \gamma_i \}, u_i \in \mathbb{Z}^r, \gamma_i \in \mathbb{R}$$

- polyhedral complex Σ in ℝ^r: finite set Σ of polyhedra in ℝⁿ st
 - a) $\Delta \in \Sigma \implies$ every face of Δ is in Σ
 - b) $\Delta, \Delta' \in \Sigma \implies \Delta \cap \Delta'$ is face of Δ and Δ'
- Let Σ be of pure dim. $n, \Sigma_n := \{\Delta \in \Sigma | \dim(\Delta) = n\}$. A weight m on Σ is $m : \Sigma_n \to \mathbb{Z}$.

 $A^{p,q}(\mathbb{R}^r) := C^{\infty}(\mathbb{R}^r) \otimes_{\mathbb{Z}} \wedge^p(\mathbb{Z}^r)^* \otimes_{\mathbb{Z}} \wedge^q(\mathbb{Z}^r)^*$ \rightsquigarrow bigraded differential alternating algebra wrt d', d'': In coordinates and with multiindex notation

$$\alpha = \sum_{\substack{|I|=\rho, |J|=q \\ r}} f_{IJ} d' x_I \wedge d'' x_J$$

$$d' \alpha = \sum_{i=1}^r \sum_{I,J} \frac{\partial f_{IJ}}{\partial x_i} d' x_i \wedge d' x_I \wedge d'' x_J$$

$$d'' \alpha = \sum_{j=1}^r \sum_{I,J} \frac{\partial f_{IJ}}{\partial x_j} d'' x_j \wedge d' x_I \wedge d'' x_J.$$

Tropical geometry and Lagerberg's superforms

Integration of α ∈ A^{n,n}_c(ℝ^r) over n-dim polyhedron Δ is well defined

 \rightsquigarrow current $\delta_{\Delta} \in D_{n,n}(\mathbb{R}^r) =: D^{r-n,r-n}(\mathbb{R}^r)$

- For a weighted polyhedral complex (Σ, m) of pure dimension n
 → current δ_(Σ,m) = Σ_{Δ∈Σ_n} m_Δδ_Δ ∈ D_{n,n}(ℝ^r)
- (Σ, m) is a tropical cycle ⇔ d'δ_(Σ,m) = 0 (⇔ balancing condition)

From now on, K is an algebraically closed field which is complete with respect to a non-trivial non-archimedean absolute value.

- There is a well-defined intersection product of tropical cycles on R^r (no equivalence needed)
- For closed subvariety U of $T = \mathbb{G}_m^r$ over K, let trop : $T^{an} \to \mathbb{R}^r$, $t \mapsto (v(t_1), \dots, v(t_r))$ and Trop $(U) := \operatorname{trop}(U^{an})$.

Then Trop(U) is a *tropical cycle* with canonical weights.

Definition

A current in $D^{p,q}(\mathbb{R}^r)$ is a δ -preform of type (p,q): \Leftrightarrow it is of the form

$$\sum_{i=1}^{N} \alpha_i \wedge \delta_{C_i}$$

with $\alpha_i \in A^{p_i,q_i}(\mathbb{R}^r)$ and C_i tropical cycle of codimension k_i with $(p,q) = (p_i + k_i, q_i + k_i)$ \rightsquigarrow bigraded differential algebra $P^{\bullet,\bullet}(\mathbb{R}^r)$ wrt d', d'', where $\delta_{C_i} \wedge \delta_{C'_j} := \delta_{C_i \cdot C'_j}$ using the tropical intersection product.

Tropical charts

X algebraic variety over K.

Definition

A tropical chart (V, φ_U) consists of

- open subset U of X
- closed immersion $\varphi_U : U \hookrightarrow T := \mathbb{G}_m^r$, trop_U := trop $\circ \varphi_U : U^{\mathrm{an}} \to N_U := \mathbb{R}^r$
- open subset Ω of $\operatorname{Trop}(U)$ st. $V := \operatorname{trop}_{U}^{-1}(\Omega)$ (open in U^{an})

Tropical charts form a basis for X^{an} .

δ -forms and δ -currents

Definition

A δ -form α on X^{an} is given by tropical charts $(V_i, \varphi_{U_i})_{i \in I}$ covering X^{an} and $\alpha_i \in P^{\bullet, \bullet}(N_{U_i})$ st

 $\alpha = \alpha' \Leftrightarrow \alpha_i |_{V_i \cap V'_j} = \alpha'_j |_{V_i \cap V'_j}$ in a tropical sense (see [GK])

→ bigraded differential alternating algebra $B^{\bullet,\bullet}(X^{an})$ wrt d', d''. Topological dual $B^{\bullet,\bullet}_C(X^{an})$ is $E^{\bullet,\bullet}(X^{an}) =:$ space of δ-currents.

Using only Lagerberg's superforms and skipping tropical cycles $\stackrel{similarly}{\rightsquigarrow}$ smooth (p, q)-forms of Chambert-Loir and Ducros (see [CD], [Gu]) leading to a subalgebra $A^{\bullet,\bullet}(X^{an})$ of $B^{\bullet,\bullet}(X^{an})$.

 δ -forms are analogous to complex differential forms with logarithmic singularities.

First Chern δ -current form

L line bundle in *X*, $\|$ $\|$ continuous metric in *L*^{an}. For a local frame of *t* of *L* on open subset *U* of *X*,

```
[c_1(L, \| \|)] := d'd'' [-\log \|t\|]
```

is a δ -current on U^{an} independent of the choice *t*.

By a partition of unity argument, we get a well-defined δ -current $[c_1(L, \| \|)]$ called the *first Chern* δ -current.

Similarly as in [CD], we have

Poincaré-Lelong formula

s meromorphic section of L

 $\Rightarrow d'd'' \left[-\log \|s\| \right] = \left[c_1(L, \| \|) \right] - \delta_{div(s)} \text{ as } \delta - \text{currents.}$

Model-metrics and δ -metrics

Important are *model-metrics*: (X, L) generic fibre of $(\mathfrak{X}, \mathcal{L})$ $x \in X^{an} \rightsquigarrow \operatorname{red}(x) \in \mathfrak{X}_s$ (special fiber) Choose trivialization $\mathcal{L}|_{\mathcal{U}} \cong O_{\mathcal{U}}$ at $\operatorname{red}(x)$: $s \in \Gamma(\mathcal{U}, \mathcal{L}) \leftrightarrow \gamma \in O(\mathcal{U})$ *model metric* $\| \|_{\mathcal{L}}$ is given at *x* by $\| s(x) \|_{\mathcal{L}} := |\gamma(x)|$.

Definition

- Metric || || on L is called smooth :⇔ log ||t|| ∈ A^{0,0}(U) for any local trivialization t : U → L.
- A δ-metric on L is a continuous metric || || st the δ-current
 [c₁(L, || ||)] is represented by a δ-form c₁(L, || ||).

Fact: A model metric is a δ -metric, but it is not always smooth!

Chambert-Loir measures

- Chambert–Loir introduced a discrete measure on X^{an} related to the model metric || ||_L.
- Defined by using degrees of the irreducible components of *x*_s.
- Important to describe equidistribution measures in arithmetic geometry.

Theorem (GK)

If X is proper variety K of dimension n, then $c_1(L, \| \|_{\mathcal{L}})^{\wedge n}$ is a Radon measure on X^{an} equal to the Chambert-Loir measure from arithmetic geometry.

Remark: In [CD], there is a similar theorem. Note however, that they need an approximation process by smooth metrics to make sense of the wedge products of the first Chern currents.

Non-archimedean Arakelov theory

X proper variety over K of dimension n.

Definition

A δ -current g_Z is called a Green current for cycle Z : $\Leftrightarrow d'd''g_Z = [\omega_Z] - \delta_Z$

 $\begin{array}{l} \stackrel{\text{Poincaré}}{\leadsto} & g_{D} := -[\log \|s\|] \text{ is a Green current for } D := div(s) \text{ and} \\ \delta \text{-metric } \| & \|. \end{array}$

Proposition [GK]

If D intersects Z property, then

$$g_{D} * g_{Z} := g_{D} \wedge \delta_{Z} - c_{1}(L, \| \|) \wedge g_{Z}$$

is a Green current for $D_{\bullet}Z$.

Proof follows from Poincaré-Lelong.

Local heights

Definition

Let D_0, \ldots, D_n be Cartier divisors intersecting properly on X, then

$$\lambda(X) := \langle g_{D_0} * \cdots * g_{D_n}, 1 \rangle$$

is called the *local height* of X (using δ -metrics on $O(D_0), \ldots, O(D_n)$).

Theorem (GK)

If we use model-metrics on $O(D_0), \ldots, O(D_n)$, then $\lambda(X)$ is the usual local height of X in arithmetic geometry given as the intersection number of the Cartier divisors on a corresponding model.

Proof: Obvious for n = 0. Induction formula shows that $\lambda(X)$ is

$$\lambda(D_n) - \int_{X^{an}} \log \|s_{D_n}\| c_1(O(D_0), \| \|_0) \wedge \cdots \wedge c_1(O(D_n), \| \|_n)$$

which holds for both variants of local heights using Theorem 1. $\hfill\square$

Dream becomes true for divisors!