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In classical analysis, one builds the catalog of special functions by repeatedly adjoining
solutions of differential equations whose coefficients are previously known functions. Conse-
quently, the properties of special functions depend crucially on the basic properties of ordi-
nary differential equations. This naturally led to the study of formal differential equations,
as in the seminal work of Turrittin [46]; this may be viewed retroactively as a theory of differ-
ential equations over a trivially valued field. After the introduction of p-adic analysis in the
early 20th century, there began to be corresponding interest in solutions of p-adic differential
equations; however, aside from some isolated instances (e.g., the proof of the Nagell-Lutz
theorem; see Theorem 3.4), a unified theory of p-adic ordinary differential equations did
not emerge until the pioneering work of Dwork on the relationship between p-adic special
functions and the zeta functions of algebraic varieties over finite fields (e.g., see [15, 16]). At
that point, serious attention began to be devoted to a serious discrepancy between the p-adic
and complex-analytic theories: on an open p-adic disc, a nonsingular differential equation
can have a formal solution which does not converge in the entire disc (e.g., the exponential
series). One is thus led to quantify the convergence of power series solutions of differential
equations involving rational functions over a nonarchimedean field; this was originally done
by Dwork in terms of the generic radius of convergence [17]. This and more refined invariants
were studied by numerous authors during the half-century following Dwork’s initial work, as
documented in the author’s book [25].

At around the time that [25] was published, a new perspective was introduced by Baldas-
sarri [3] (and partly anticipated in prior unpublished work of Baldassarri and Di Vizio [4])
which makes full use of Berkovich’s theory of nonarchimedean analytic spaces. Given a dif-
ferential equation as above, or more generally a connection on a curve over a nonarchimedean
field, one can define an invariant called the convergence polygon; this is a function from the
underlying Berkovich topological space of the curve into a space of Newton polygons, which
measures the convergence of formal horizontal sections and is well-behaved with respect
to both the topology and the piecewise linear structure on the Berkovich space. One can
translate much of the prior theory of p-adic differential equations into (deceptively) simple
statements about the behavior of the convergence polygon; this process was carried out in a
series of papers by Poineau and Pulita [37, 33], as supplemented by work of this author [28]
and upcoming joint work with Baldassarri [5].
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In this paper, we present the basic theorems on the convergence polygon, which provide
a number of combinatorial constraints that may be used to extract information about con-
vergence of formal horizontal sections at one point from corresponding information at other
points. We include numerous examples to illustrate some typical behaviors of the conver-
gence polygon. We also indicate some relationships between convergence polygons and the
geometry of finite morphisms, paying special attention to the case of cyclic p-power coverings
with p equal to the residual characteristic. This case is closely linked with the Oort lifting
problem for Galois covers of curves in characteristic p, and some combinatorial constructions
arising in that problem turn out to be closely related to convergence polygons. There are
additional applications to the study of integrable connections on higher-dimensional nonar-
chimedean analytic spaces, both in the cases of zero residual characteristic [26] and positive
residual characteristic [27], but we do not pursue these applications here.

To streamline the exposition, we make no attempt to indicate the techniques of proof
underlying our main results; in some cases, quite sophisticated arguments are required. We
limit ourselves to saying that the basic tools are developed in a self-contained fashion in
[25], and the other aforementioned results are obtained by combining results from [25] in an
intricate manner. (Two exceptions are made for results which do not occur in any existing
paper; their proofs are relegated to appendices.) We also restrict generality by considering
only proper curves, even though many of the results we discuss can be formulated for open
curves, possibly of infinite genus.

1. Newton polygons

As setup for our definition of convergence polygons, we fix some conventions regarding
Newton polygons.

Definition 1.1. For n a positive integer, let P [0, n] be the set of continuous functions
N : [0, n]→ R satisfying the following conditions.

(a) We have N (0) = 0.
(b) For i = 1, . . . , n, the restriction of N to [i− 1, i] is affine.

For i = 1, . . . , n, we write hi : P [0, n] → R for the function N 7→ N (i); we call hi(N ) the
i-th height of N . The product map h1 × · · · × hn : P [0, n]→ Rn is a bijection, using which
we equip P [0, n] with a topology and an integral piecewise linear structure. We sometimes
refer to hn simply as h and call it the total height.

Definition 1.2. Let NP [0, n] be the subset of P [0, n] consisting of concave functions. For
i = 1, . . . , n, we write si : P [0, n]→ R for the function N 7→ N (i)−N (i− 1); we call si(N )
the i-th slope of N . For N ∈ NP [0, n], we have s1(N ) ≥ · · · ≥ sn(N ).

Definition 1.3. Let I ⊆ R be a closed interval. A function N : I → NP [0, n] is affine
if it has the form N (t) = N0 + tN1 for some N0,N1 ∈ P [0, n]. In this case, we call N1

the slope of N . We say that N has integral derivative if N1(i) ∈ Z for i = n and for each
i ∈ {1, . . . , n−1} such that for all t in the interior of I, N (t) has a change of slope at i. This
implies that the graph of N1 has vertices only at lattice points, but not conversely. (It would
be natural to use the terminology integral slope, but we avoid this terminology to alleviate
confusion with Definition 1.2.)
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2. PL structures on Berkovich curves

We next recall the canonical piecewise linear structure on a Berkovich curve (e.g., see [6]).

Hypothesis 2.1. For the rest of this paper, let K be a nonarchimedean field, i.e., a field
complete with respect to a nonarchimedean absolute value; let X be a smooth, proper,
geometrically connected curve over K; let Z be a finite set of closed points of X; and put
U = X − Z.

Convention 2.2. Whenever we view Qp as a nonarchimedean field, we normalize the p-adic
absolute value so that |p| = p−1.

Remark 2.3. Recall that the points of the Berkovich analytification Xan may be identified
with equivalence classes of pairs (L, x) in which L is a nonarchimedean field overK and x is an
element of X(L), where the equivalence relation is generated by relations of the form (L, x) ∼
(L′, x′) where x′ is the restriction of x along a continuous K-algebra homomorphism L→ L′.
As is customary, we classify points of Xan into types 1,2,3,4 (e.g., see [28, Proposition 4.2.7]).
To lighten notation, we identify Z with Zan, which is a finite subset of Xan consisting of
type 1 points.

Definition 2.4. For ρ > 0, let xρ denote the generic point of the disc |z| ≤ ρ in P1
K . A

segment in Xan is a closed subspace S homeomorphic to a closed interval for which there
exist an open subspace U of Xan, a choice of values 0 ≤ α < β ≤ +∞, and an isomorphism
of U with {z ∈ P1,an

K : α < |z| < β} identifying the interior of S with {xρ : ρ ∈ (α, β)}. A
virtual segment in Xan is a connected closed subspace whose base extension to some finite
extension of K is a disjoint union of segments.

A strict skeleton in Xan is a subspace Γ containing Zan equipped with a homeomorphism
to a finite connected graph, such that each vertex of the graph corresponds to either a point
of Z or a point of type 2, and each edge corresponds to a virtual segment, and Xan retracts
continuously onto Γ. Using either tropicalizations or semistable models, one may realize Xan

as the inverse limit of its strict skeleta; again, see [6] for a detailed discussion.

Definition 2.5. Note that

χ(U) = 2− 2g(X)− length(Z),

so χ(U) ≤ 0 if and only if either g(X) ≥ 1 or length(Z) ≥ 2. In this case, there is a unique
minimal strict skeleton in Xan, which we denote ΓX,Z . Explicitly, if K is algebraically closed,
then the underlying set of ΓX,Z is the complement in Xan of the union of all open discs in Uan;
for general K, the underlying set of ΓX,Z is the image under restriction of the minimal strict
skelelon in Xan

L for L a completed algebraic closure of K. Beware that ΓX,Z is not invariant
under base extension from K to L if L is not the completion of an algebraic extension of K;
see Definition 8.4 for a related phenomenon.

3. Convergence polygons: projective space

We next introduce the concept of the convergence polygon associated to a differential
equation on P1.

Hypothesis 3.1. For the rest of this paper, we assume that the nonarchimedean field K
is of characteristic 0, as otherwise the study of differential operators on K-algebras has a
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markedly different flavor (for instance, any derivation on a ring R of characteristic p > 0 has
the subring of p-th powers in its kernel). By contrast, the residue characteristic of K, which
we call p, may be either 0 or positive unless otherwise specified (e.g., if we refer to Qp then
we implicitly require p > 0).

Hypothesis 3.2. For the rest of §3, take X = P1
K and consider the differential equation

(3.2.1) y(n) + fn−1(z)y(n−1) + · · ·+ f0(z)y = 0

for some rational functions f0, . . . , fn−1 ∈ K(z) with poles only within Z. If Z = {∞}, let m
be the dimension of the K-vector space of entire solutions of (3.2.1); otherwise, take m = 0.

Definition 3.3. For any nonarchimedean field L over K and any x ∈ U(L), let Sx be the set
of formal solutions of (3.2.1) with y ∈ LJz−xK. By interpreting (3.2.1) as a linear recurrence
relation of order n on the coefficients of a power series, we see that every list of n initial
conditions at z = x corresponds to a unique formal solution; that is, the composition

Sx → LJz − xK→ LJz − xK/(z − x)n

is a bijection. In particular, Sx is an L-vector space of dimension n.

Theorem 3.4 (p-adic Cauchy theorem). Each element of Sx has a positive radius of con-
vergence.

Proof. This result was originally proved by Lutz [29, Théorème IV] somewhat before the
emergence of the general theory of p-adic differential equations; Lutz used it as a lemma
in her proof of the Nagell-Lutz theorem on the integrality of torsion points on rational
elliptic curves. One can give several independent proofs using the modern theory; see [25,
Proposition 9.3.3, Proposition 18.1.1]. �

Definition 3.5. For i = 1, . . . , n −m, choose si(x) ∈ R so that e−si(x) is the supremum of
the set of ρ > 0 such that Uan contains the open disc |z − x| < ρ and Sx contains n− i+ 1
linearly independent elements convergent on this disc. Note that this set is nonempty by
Theorem 3.4 and bounded above by the definition of m, so the definition makes sense. In
particular, s1(x) is the joint radius of convergence of all of the elements of Sx, while sn−m(x)
is the maximum finite radius of convergence of a nonzero element of Sx.

Since s1(x) ≥ · · · ≥ sn−m(x), the si(x) are the slopes of a polygon Nz(x) ∈ NP [0, n−m],
which we call the convergence polygon of (3.2.1) at x. (We include z in the notation to
remind ourselves that Nz depends on the choice of the coordinate z of X.) This construction
is compatible with base change: if L′ is a nonarchimedean field containing L and x′ is the
image of x in U(L′), then Nz(x) = Nz(x′). Consequently, we obtain a well-defined function
Nz : Uan → NP [0, n−m].

Definition 3.6. By definition, e−s1(Nz(x)) can never exceed the largest value of ρ for which
the disc |z− x| < ρ does not meet Z. When equality occurs, we say that (3.2.1) satisfies the
Robba condition at x.

Theorem 3.7. The function Nz : Uan → NP [0, n − m] is continuous; more precisely, it
factors through the retraction of P1,an

K onto some strict skeleton Γ, and the restriction of Nz
to each edge of Γ is affine with integral derivative.

Proof. See [37] or [28] or [5]. �
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One can say quite a bit more, but for this it is easier to shift to a coordinate-free inter-
pretation, which also works for more general curves; see §5.

4. A gallery of examples

To help the reader develop some intuition, we collect a few illustrative examples of con-
vergence polygons. Throughout §4, retain Hypothesis 3.1.

Example 4.1. Take K = Qp, Z = {∞}, and consider the differential equation y′ − y = 0.
The formal solutions of this equation with y ∈ LJz − xK are the scalar multiples of the
exponential series

exp(z − x) =
∞∑
i=0

(z − x)i

i!
,

which has radius of convergence p−1/(p−1). Consequently,

s1(Nz(x)) =
1

p− 1
log p;

in particular, Nz is constant on Uan.

In this next example, we illustrate the effect of changing Z on the convergence polygon.

Example 4.2. Set notation as in Example 4.1, except now with Z = {0,∞}. In this case
we have

s1(Nz(x)) = max

{
− log |x|, 1

(p− 1)
log p

}
.

In particular, Nz factors through the retraction of P1,an
K onto the path from 0 to ∞. For

x ∈ Uan, the Robba condition holds at x if and only if |x| ≥ p−1/(p−1).

Example 4.3. TakeK = Qp, Z = {0,∞}, and consider the differential equation y′− 1
p
z−1y =

0. The formal solutions of this equation with y ∈ LJz − xK are the scalar multiples of the
binomial series

∞∑
i=0

(
1/p

i

)
x1/p−i(z − x)i,

which has radius of convergence p−p/(p−1)|x|. Consequently,

s1(Nz(x)) =
p

p− 1
log p− log |x|,

so again Nz factors through the retraction of P1,an
K onto the path from 0 to ∞. In this case,

the Robba condition holds nowhere.

Example 4.4. Assume p > 2, take K = Qp, Z = {0,∞}, and consider the Bessel differential
equation (with parameter 0)

y′′ + z−1y′ + y = 0.

This example was studied by Dwork [18], who showed that

s1(Nz(x)) = s2(Nz(x)) = max

{
− log |x|, 1

p− 1
log p

}
.

Again, Nz factors through the retraction of P1,an
K onto the path from 0 to ∞. As in Exam-

ple 4.2, for x ∈ Uan, the Robba condition holds at x if and only if |x| ≥ p−1/(p−1).
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Our next example illustrates a typical effect of varying a parameter.

Example 4.5. Let K be an extension of Qp, take Z = {0,∞}, and consider the differential
equation y′ − λz−1y = 0 for some λ ∈ K (the case λ = 1/p being Example 4.3). Then

s1(Nz(x)) = c+
1

p− 1
log p− log |x|

where c is a continuous function of

c0 = min{|λ− t| : t ∈ Zp};
namely, we have

c =


log |c0| c0 ≥ 1

− pm−1
(p−1)pm

log p+ 1
pm

log |c0| p−m ≤ c0 ≤ p−m+1,m = 1, 2, . . .

− 1
p−1

log p c0 = 0.

In particular, the Robba condition holds everywhere if λ ∈ Zp and nowhere otherwise. In

either case, Nz factors through the retraction of P1,an
K onto the path from 0 to ∞.

Example 4.6. Take K = Qp, Z = {∞}, and consider the differential equation y′−aza−1y =
0 for some positive integer a not divisible by p (the case a = 1 being Example 4.1). The
formal solutions of this equation are the scalar multiples of

exp(za − xa).
This series converges in the region where |za − xa| < p−1/(p−1); consequently,

s1(Nz(x)) = max

{
1

p− 1
log p+ (a− 1) log |x|, 1

a(p− 1)
log p

}
.

In this case, Nz factors through the retraction onto the path from xp−1/(p−1) to ∞.

Example 4.7. Take K = C((t)) (so p = 0), Z = {∞}, and consider the differential equation

y′′′ + zy′′ + y = 0.

It can be shown that

s1(Nz(x)) = max {0, log |x|} , s2(Nz(x)) = s3(Nz(x)) = min

{
0,−1

2
log |x|

}
.

In this case, Nz factors through the retraction onto the path from x1 to ∞. Note that
this provides an example where the slopes of Nz(x) are not bounded below uniformly on
(P1

K−Z)an; that is, as x approaches∞, one local horizontal section has radius of convergence
growing without bound, but these local horizontal sections do not patch together.

Example 4.8. Assume p > 2, take K = Qp, Z = {0, 1,∞}, and consider the Gaussian
hypergeometric differential equation

y′′ +
(1− 2z)

z(1− z)
y′ − 1

4z(1− z)
y = 0.

This example was originally studied by Dwork [16] due to its relationship with the zeta
functions of elliptic curves. Using Dwork’s calculations, it can be shown that

s1(Nz(x)) = s2(Nz(x)) = max{log |x|,− log |x|,− log |x− 1|}.
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In this case, Nz factors through the retraction from P1,an
K onto the union of the paths from

0 to ∞ and from 1 to ∞, and the Robba condition holds everywhere.

Remark 4.9. One can compute additional examples of convergence polygons associated to
first-order differential equations using an explicit formula for the radius of convergence at a
point, due to Christol–Pulita. This result was originally reported in [8] but with an error in
the formula; for a corrected statement, see [38, Introduction, Théorème 5].

5. Convergence polygons: general curves

We now describe an analogue of the convergence polygon in a more geometric setting.

Hypothesis 5.1. Throughout §5, assume that χ(U) ≤ 0, i.e., either g(X) ≥ 1 or length(Z) ≥
2. Let E be a vector bundle on U of rank n equipped with a connection ∇ : E → E⊗OU ΩU/K .

Remark 5.2. For the results in this section, one could also allow X to be an analytic curve
which is compact but not necessarily proper. To simplify the discussion, we omit this level
of generality.

Definition 5.3. Let L be a nonarchimedean field and choose x ∈ U(L). Since X is smooth,
Uan
L contains a neighborhood of x isomorphic to an open disc over L. Thanks to our restric-

tions on X and Z, the union Ux of all such neighborhoods is itself isomorphic to an open
disc over L. For each ρ ∈ (0, 1], let Ux,ρ be the open disc of radius ρ centered at x within Ux
(normalized so that Ux,1 = Ux).

Let ÔX,x denote the completed local ring of X at x; it is abstractly a power series ring

in one variable over L. Let Ex denote the pullback of E to ÔX,x, equipped with the induced
connection. One checks easily that Ex is a trivial differential module; more precisely, the
space ker(∇, Ex) is an n-dimensional vector space over L and the natural map

ker(∇, Ex)⊗L ÔX,x → Ex

is an isomorphism.
For i = 1, . . . , n, choose si(x) ∈ [0,+∞) so that e−si(x) is the supremum of the set of

ρ ∈ (0, 1] such that Ex contains n − i + 1 linearly independent sections convergent on Ux,ρ.
Again, this set of such ρ is nonempty by Theorem 3.4. Since s1(x) ≥ · · · ≥ sn(x), the si(x)
are the slopes of a polygon N (x) ∈ NP [0, n], which we call the convergence polygon of E
at x. Again, the construction is compatible with base change, so it induces a well-defined
function N : Uan → NP [0, n].

Definition 5.4. For x ∈ Uan, we say that E satisfies the Robba condition at x if N (x) is the
zero polygon.

We have the following analogue of Theorem 3.7.

Theorem 5.5. The function N : (X − Z)an → NP [0, n] is continuous. More precisely,
there exists a strict skeleton Γ such that N factors through the retraction of Xan onto Γ, and
the restriction of N to each edge of Γ is affine with integral derivative.

Proof. See [33] or [28] or [5] (and Remark 5.6). �
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Remark 5.6. It is slightly inaccurate to attribute Theorem 5.5 to [33] or [5], as the results
proved therein are slightly weaker: they require an uncontrolled base extension on K, which
creates more options for the strict skeleton Γ. In particular, Theorem 5.5 as stated implies
that N is locally constant around any point of type 4, which cannot be established using
the methods of [33] or [5]; one instead requires some dedicated arguments found only in
[28]. These extra arguments are crucial for the applications of Theorem 5.5 in the contexts
described in [26] and [27].

Remark 5.7. Suppose that X = P1
K and∞ ∈ Z. Given a differential equation as in (3.2.1),

we can construct an associated connection E of rank n whose underlying vector bundle is
free on the basis e1, . . . , en and whose action of ∇ is given by

∇(e1) = f0(z)en

∇(e2) = f1(z)en − e1

...

∇(en−1) = fn−2(z)en − en−2

∇(en) = fn−1(z)en − en−1.

A section of E is then horizontal if and only if it has the form ye1 +y′e2 + · · ·+y(n−1)en where
y is a solution of (3.2.1). If length(Z) ≥ 2, each of Nz and N can be computed in terms
of the other; this amounts to changing the normalization of certain discs. In particular, the
statements of Theorem 3.7 and Theorem 5.5 in this case are equivalent.

If length(Z) = 1, we cannot define N as above. However, if K is nontrivially valued, one
can recover the properties of Nz by considering N with Z replaced by Z ∪ {x} for some
x ∈ U(K) with |x| sufficiently large (namely, larger than the radius of convergence of any
nonentire formal solution at 0). We refer to [5] for further details.

Remark 5.8. One can extend Remark 5.7 by defining Nz in the case where X = P1
K

and ∞ ∈ Z, and using Theorem 5.5 to establish an analogue of Theorem 3.7. With this
modification, we still do not define either N or Nz in the case where X = P1

K and Z = ∅, but
this case is completely trivial: the vector bundle E must admit a basis of horizontal sections
(see [5]).

Theorem 5.9. Suppose that x ∈ Γ∩Uan is the generic point of a open disc D contained in
X and the Robba condition holds at x.

(a) If D ∩ Z = ∅, then the restriction of E to D is trivial (i.e., it admits a basis of
horizontal sections).

(b) If D ∩ Z consists of a single point z at which ∇ is regular, then the Robba condition
holds on D − {z}.

Proof. Part (a) is a special case of the Dwork transfer theorem; see for instance [25, Theo-
rem 9.6.1]. Part (b) follows as in the proof of [25, Theorem 13.7.1]. �

Remark 5.10. Theorem 5.9(b) is a variant of a result of Christol, which has a slightly
stronger hypothesis and a slightly stronger conclusion. In Christol’s result, one must assume
either that p = 0, or that p > 0 and the pairwise differences between the exponents of ∇
at z are not p-adic Liouville numbers (see Example 7.19). One however gets the stronger
conclusion that the “formal solution matrix” of ∇ at z converges on all of D.
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Remark 5.11. Let k be the residue field of K. Suppose that X = P1
K , ∇ is regular

everywhere, and the reduction map from Z to P1
k is injective. Then Theorem 5.9 implies

that if the Robba condition holds at x1, then it holds on all of Uan. For instance, this
is the case for (the connection associated via Remark 5.7 to) the hypergeometric equation
considered in Example 4.8; more generally, it holds for the hypergeometric equation

y′′ − c− (a+ b+ 1)z

z(1− z)
y′ − ab

z(1− z)
y = 0

if and only if a, b, c ∈ Zp (the case of Example 4.8 being a = b = 1/2, c = 1). This example
and Example 4.5, taken together, suggest that for a general differential equation with one or
more accessory parameters, the Robba condition at a fixed point is likely to be of a “fractal”
nature in these parameters. For some additional examples with four singular points, see the
work of Beukers [7].

Remark 5.12. One can also consider some modified versions of the convergence polygon.
For instance, one might take e−si(x) to be the supremum of those ρ ∈ (0, 1] such that the
restriction of E to Ux,ρ splits off a trivial submodule of rank at least n− i+ 1; the resulting
convergence polygons will again satisfy Theorem 5.5. It may be that some modification of
this kind can be used to eliminate some hypotheses on p-adic exponents, as in Theorem 7.23.

6. Derivatives of convergence polygons

We now take a closer look at the local variation of convergence polygons. Throughout §6,
continue to retain Hypothesis 5.1.

Definition 6.1. For x ∈ Xan, a branch of X at x is a local connected component of X−{x},
that is, an element of the direct limit of π0(U − {x}) as U runs over all neighborhoods of x
in X. Depending on the type of x, the branches of X can be described as follows.

1. A single branch.
2. One branch corresponding to each closed point on the curve Cx (defined over the

residue field of K) whose function field is the residue field of H(x).
3. Two branches.
4. One branch.

For each branch ~t of X at x, by Theorem 5.5 we may define the derivative of N along ~t
(away from x), as an element of P [0, n] with integral vertices; we denote this element by
∂~t(N ). For x of type 1, we also denote this element by ∂x(N ) since there is no ambiguity
about the choice of the branch. We may similarly define ∂~t(hi(N )) ∈ R for i = 1, . . . , n,
optionally omitting i in the case i = n; note that ∂~t(h(N )) ∈ Z.

Theorem 6.2. For z ∈ Z, −∂z(N ) is the polygon associated to the Turrittin-Levelt-Hukuhara
decomposition of Ez (see for example [25, Chapter 7]). In particular, this polygon belongs to
NP [0, n], its slopes are all nonnegative, and its height equals the irregularity Irrz(∇) of ∇
at z.

Proof. See [5]. �

Corollary 6.3. For z ∈ Z, N extends continuously to a neighborhood of z if and only if ∇
has a regular singularity at z (i.e., its irregularity at z equals 0). In particular, N extends
continuously to all of Xan if and only if ∇ is everywhere regular.
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Remark 6.4. Using a similar technique, one can compute the asymptotic behavior of N
in a neighborhood of z ∈ Z in terms of the “eigenvalues” occurring in the Turrittin-Levelt-
Hukuhara decomposition of Ez. For example, ∇ satisfies the Robba condition on some
neighborhood of z if and only if ∇ is regular at z with all exponents in Zp.

Theorem 6.5. For x ∈ Uan and ~t a branch of X at x not pointing along ΓX,Z, we have
∂~t(N ) ≤ 0.

Proof. This requires somewhat technical arguments not present in the existing literature; see
Theorem A.9 for the case p > 0 and Theorem B.4 for the case p = 0. �

Remark 6.6. In the setting of Theorem 6.5, the statement that ∂~t(h1(N )) ≤ 0 is equivalent
to the Dwork transfer theorem (again see [25, Theorem 9.6.1]). For p = 0, Theorem 6.5 is
deduced by relating ∂~t(N ) to local indices, as discussed in §7; for p > 0, one uses a suitable
perturbation to reduce to the case where N (x) has no slopes equal to 0, to which results of
[25] may be applied. See Appendix A for details.

Remark 6.7. By Theorem 5.5, for each x ∈ Uan, there exist only finitely many branches
~t at x along which N has nonzero slope. If x is of type 1 or 4, there are in fact no such
branches. If x is of type 3, then the slopes along the two branches at x add up to 0.

7. Subharmonicity and index

Using the piecewise affine structure of the convergence polygon, we formulate some addi-
tional properties, including local and global index formulas for de Rham cohomology. The
local index formula is due to Poineau and Pulita [34], generalizing some partial results due
to Robba [39, 40, 41, 42] and Christol-Mebkhout [9, 10, 11, 12]. Unfortunately, in the case
p > 0 one is forced to interact with a fundamental pathology in the theory of p-adic dif-
ferential equations, namely the effect of p-adic Liouville numbers ; consequently, the global
formula we derive here cannot be directly deduced from the local formula (see Remark 7.14
and Remark 7.18).

Hypothesis 7.1. Throughout §7, continue to retain Hypothesis 5.1, but assume in addition
that K is algebraically closed. (Without this assumption, one can still formulate the results
at the expense of having to keep track of some additional multiplicity factors.)

Definition 7.2. For x ∈ Uan, let (∆N )x ∈ P [0, n] denote the sum of ∂~t(N ) over all branches
~t of X at x; by Remark 6.7, this sum can only be nonzero when x is of type 2. Define
the Laplacian of N as the P [0, n]-valued measure ∆N taking a continuous function f :
Uan → R to

∑
x∈Uan f(x)(∆N )x. For i = 1, . . . , n, we may similarly define the multiplicities

(∆hi(N ))x ∈ R and the Laplacian ∆hi(N ); we again omit the index i when it equals n.

Remark 7.3. The definition of the Laplacian can also be interpreted in the context of
Thuillier’s potential theory [45], which applies more generally to functions which need not
be piecewise affine.

Lemma 7.4. We have ∫
∆h(N ) =

∑
z∈Z

Irrz(∇).
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Proof. For e an edge of Γ, we may compute the slopes of N along the two branches pointing
into e from the endpoints of e; these two slopes add up to 0. If we add up these slopes over
all e, then regroup this sum by vertices, then the sum at each vertex z ∈ Z equals − Irrz(∇)
by Theorem 6.2, while the sum at each vertex x ∈ Uan is the multiplicity of x in ∆N . This
proves the claim. �

Definition 7.5. For any open subset V of Xan, consider the complex

0→ E ∇→ E ⊗ Ω→ 0

of sheaves, keeping in mind that if V ∩ Z 6= ∅, then the sections over V are allowed to be
meromorphic at V ∩ Z (but not to have essential singularities; see Remark 7.8). We define
χdR(V, E) to be the index of the hypercohomology of this complex, i.e., the alternating sum
of K-dimensions of the hypercohomology groups.

Lemma 7.6. We have

(7.6.1) χdR(Xan, E) = nχ(U)−
∑
z∈Z

Irrz(∇) = n(2− 2g(X)− length(Z))−
∑
z∈Z

Irrz(∇).

Proof. Let K0 be a subfield of K which is finitely generated over Q to which X,Z, E ,∇ can
be descended. Then choose an embedding K0 ∈ C and let XC be the base extension of
the descent of X, again equipped with a meromorphic vector bundle E and connection ∇.
Note that χdR(Xan, E) is computed by a spectral sequence in which one first computes the
coherent cohomology of E and E ⊗ Ω separately. By the GAGA principle both over C [22,
Exposé XII] and K [14, Example 3.2.6], these coherent cohomology groups can be computed
equally well over any of Xan, X (or its descent to K0), XC, or Xan

C . Consequently, despite the
fact that the connection is only K-linear rather than O-linear, we may nonetheless conclude
that χdR(Xan, E) = χdR(Xan

C , E). (As an aside, this argument recovers a comparison theorem
of Baldassarri [2].)

To compute χdR(Xan
C , E), we form a finite open covering {Vi}i∈I of XC with the following

properties.

• For each i ∈ I, Vi is isomorphic to a simply connected domain in C, and Vi ∩ Z
contains at most one point.
• For i, j ∈ I distinct, Vi ∩ Vj is either empty or isomorphic to a simply connected

domain in C, and Vi ∩ Vj ∩ Z = ∅.
• For i, j, k ∈ I pairwise distinct, Vi ∩ Vj ∩ Vk = ∅.

We then have
χdR(Xan

C , E) =
∑
i∈I

χdR(Vi, E)−
∑
i 6=j∈I

χdR(Vi ∩ Vj, E).

It then suffices to check that for i, j ∈ I not necessarily distinct,

(7.6.2) χdR(Vi ∩ Vj, E) =

{
− Irrz(∇) Vi ∩ Vj ∩ Z = {z}
1 Vi ∩ Vj ∩ Z = ∅.

In case Vi ∩ Vj ∩ Z = ∅, this is immediate because the restriction of E to Vi ∩ Vj is trivial.
In case Vi ∩ Vj ∩ Z = {z}, we may similarly replace Vi ∩ Vj with a small open disc around
z, and then invoke the Deligne-Malgrange interpretation of irregularity as the local index of
meromorphic de Rham cohomology on a punctured disc [30, Théorème 3.3(d)]. �
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Theorem 7.7 (Global index formula). We have

(7.7.1) χdR(Xan, E) = nχ(U)−
∫

∆h(N ) = n(2− 2g(X)− length(Z))−
∫

∆h(N ).

Proof. This follows by comparing Lemma 7.4 with Lemma 7.6. �

Remark 7.8. It may not be immediately obvious why Theorem 7.7 is of value, i.e., why
it is useful to express the index of de Rham cohomology in terms of convergence polygons
instead of irregularity. It turns out that there is a profound difference between the behavior
of the index in the complex-analytic and nonarchimedean settings. In the complex case, for
any open analytic subspace V of Xan

C , we have

(7.8.1) χdR(V, E) = nχ(V ∩ Uan)−
∑

z∈V ∩Z

Irrz(∇)

by the same argument as in the proof of (7.6.2). In particular, χdR(V, E) 6= χdR(V − Z, E);
that is, the index of de Rham hypercohomology depends on whether we allow poles or
essential singularities at the points of Z. By contrast, in the nonarchimedean case, these
two indices coincide under a suitable technical hypothesis to ensure that they are both
defined; see Example 7.9 for a simple example and Corollary 7.13 for the general case (and
Example 7.19 and Remark 7.20 for a counterexample failing the technical hypothesis). This
means that in the nonarchimedean case, the “source” of the index of de Rham cohomology
is not irregularity, but rather the Laplacian of the convergence polygon (see Theorem 7.12).

Example 7.9. Consider the connection associated to Example 4.2 as per Remark 5.7; note
that Irr0(∇) = 0, Irr∞(∇) = 1, so χdR(Xan, E) = −1. For α > 0, let Vα,Wα be the subspace
|z| < α, |z| > α of Xan. By Mayer-Vietoris,

(7.9.1) χdR(Vβ, E) + χdR(Wα, E)− χdR(Vβ ∩Wα, E) = χdR(Xan, E) = −1.

On the other hand, χdR(Vα, E) (resp. χdR(Wα, E)) equals the index of the operator y 7→ y′−y
on Laurent series in z convergent for |z| < α (resp. in z−1 convergent for |z−1| < α−1). If
f =

∑
n fnz

−n, g =
∑

n gnz
−n are two such series, then the equation g = f ′− f is equivalent

to

(7.9.2) fn = −gn − (n− 1)fn−1 (n ∈ Z).

Suppose first that p−1/(p−1) < α < β. Then given g ∈ K((z−1)), we may solve uniquely for
f ∈ K((z−1)), and if g converges on Wα − {∞}, then so does f . We thus compute that

χdR(Vβ, E) = −1, χdR(Wα, E) = 0, χdR(Vβ ∩Wα, E) = 0;

namely, the second equality is what we just computed, the third follows from Robba’s index
formula [42] (see also [28, Lemma 3.7.5]), and the first follows from the other two plus (7.9.1).
In particular, the local index at∞ equals 0, whereas in the complex-analytic setting it equals
−1 by the Deligne-Malgrange formula (see the proof of Lemma 7.6).

Suppose next that α < β < p−1/(p−1). Then by contrast, we have

χdR(Vβ, E) = 0, χdR(Wα, E) = −1, χdR(Vβ ∩Wα, E) = 0;

namely, the first and third equalities follow from the triviality of ∇ on Vβ, and the second
follows from the other two plus (7.9.1).
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With Example 7.9 in mind, we now describe a local refinement of Theorem 7.7, in which
we dissect the combinatorial formula for the index into local contributions.

Definition 7.10. For x ∈ Uan ∩ ΓX,Z , let valΓ(x) be the valence of x as a vertex of ΓX,Z ,
taking valΓ(x) = 2 when x lies on the interior of an edge. (We refer to valence instead of
degree to avoid confusion with degrees of morphisms.) For x ∈ Uan, define

(7.10.1) χx(E) =

{
n(2− 2g(Cx)− valΓ(x))− (∆h(N ))x x ∈ ΓX,Z
−∆h(N )x x /∈ ΓX,Z .

Let χ(E) be the R-valued measure whose value on a continuous function f : Uan → R is∑
x∈Uan f(x)χx(E).

Lemma 7.11. We have

χdR(Xan, E) = nχ(U)−
∫

∆h(N ) =

∫
χ(E).

Proof. This follows from Theorem 7.7 plus the identity∑
x∈Uan∩ΓX,Z

(2− 2g(Cx)− valΓ(x)) = 2− 2g(X)− length(Z),

which amounts to the combinatorial formula for the genus of an analytic curve [6, §4.16]. �

Theorem 7.12 (Local index formula). Let V be an open subspace of Xan which is the
retraction of an open subspace of ΓX,Z. If p > 0, assume some additional technical hypotheses
(see Remark 7.14). Then

χdR(V, E) =

∫
V ∩Uan

χ(E).

Proof. See [34, Theorem 3.5.2]. �

Corollary 7.13. With hypotheses as in Theorem 7.12, χdR(V, E) = χdR(V ∩ Uan, E); that
is, the index of de Rham hypercohomology is the same whether we allow poles or essential
singularities at Z.

Remark 7.14. Let Γ be a strict skeleton for which the conclusion of Theorem 5.5 holds.
For v a vertex of Γ, define the star of v, denoted ?v, as the union of v and the interiors of
the edges of Γ incident to v. Let πΓ : X → Γ be the retraction onto Γ, through which N
factors. Under the hypotheses of Theorem 7.12, we have

(7.14.1) χdR(π−1
Γ (?v), E) = χv(E), χdR(π−1

Γ (?v ∩ ?w), E) = 0.

We can then recover Theorem 7.7 from (7.14.1) by using Mayer-Vietoris (and GAGA over
K; see Remark 7.8) to write

χdR(Xan, E) =
∑
v

χdR(π−1
Γ (?v), E)−

∑
v 6=w

χdR(π−1
Γ (?v ∩ ?w), E);

one may similarly deduce Theorem 7.12 from (7.14.1).
13



Remark 7.15. For a given connection, one can extend the range of applicability of The-
orem 7.12 by enlarging the set Z. Let us examine closely what happens if we add one
additional point z′ ∈ U(K) to Z. On one hand, by Lemma 7.6, enlarging Z has the effect of
decreasing χdR(Xan, E) by n.

On the other hand, let Vz′ be the maximal open disc in Uan containing z′; its generic point
is some y′ ∈ Uan∩ΓX,Z . If we put Z ′ = Z ∪{z′}, then ΓX,Z′ is the union of ΓX,Z (subdivided
at x′ if necessary) with the path from x′ to z′ in Vz′ . It follows that enlarging Z does not
change χx(E) for any x ∈ Uan−Vz′ −{y}. It follows that

∑
x∈Vz′∪{y}

χx(E) must decrease by

n, but it is difficult to predict in advance for which x the change occurs.

Remark 7.16. One of the main reasons we have restricted attention to meromorphic con-
nections on proper curves is that in this setting, Theorem 5.5 ensures that χx(E) = 0 for
all but finitely many x ∈ Uan. It is ultimately more natural to state Theorem 7.12 for con-
nections on open analytic curves, as is done in [34, Theorem 3.8.10]; however, this requires
some additional hypotheses to ensure that χ(E) is a finite measure.

Definition 7.17. Assume p > 0. A p-adic Liouville number is an element x ∈ Zp − Z such
that

lim inf
m→∞

{|y| : y ∈ Z, y − x ∈ pmZp}
m

< +∞.

As in the classical case, p-adic Liouville numbers are always transcendental [19, Proposition
VI.1.1].

Remark 7.18. Assume p > 0. The technical hypotheses of Theorem 7.12 are needed
to guarantee the existence of the indices appearing in (7.14.1). In case ∇ has a regular
singularity at z ∈ Z with all exponents in Zp, these hypotheses include the condition that
no two exponents of ∇ at z differ by a p-adic Liouville number; see Example 7.19 for a
demonstration of the necessity of such a condition.

Unfortunately, the full hypotheses are somewhat more complicated to state. They arise
from the fact that with notation as in Remark 7.14, one can separate off a maximal compo-
nent of E on π−1

Γ (?v ∩ ?w) which satisfies the Robba condition, to which one may associate
some p-adic numbers playing the role of exponents; the hypothesis is that (for any particular
v, w) no two of these numbers differ by a p-adic Liouville numbers. The difficulty is that the
definition of these p-adic exponents, due to Christol and Mebkhout (and later simplified by
Dwork) is somewhat indirect; they occur as “resonant frequencies” for a certain action by
the group of p-power roots of unity, which are hard to control except in some isolated cases
where they are forced to be rational numbers (e.g., Picard-Fuchs equations, a/k/a Gauss-
Manin connections, or connections arising from F -isocrystals in the theory of crystalline
cohomology). See [25, Chapter 13] for more discussion.

Example 7.19. Assume p > 0 and take X = P1
K , Z = {0,∞}. Take E to be free of rank 1

with the action of ∇ given by

∇(f) = λf
dz

z
+ df

for some λ ∈ K. For α, β with 0 < α < β, let V be the open annulus α < |z| < β. The
1-forms on V are series

∑∞
n=−∞ cnz

n dz
z

such that |cn|αn → 0 as n→ −∞ and |cn|βn → 0 as
n→ +∞.
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If λ = 0, then |cn|αn → 0 if and only if |cn/n|αn → 0 and similarly for β, so every 1-form
on V with c0 = 0 is in the image of ∇. It follows that if λ ∈ Z, then the kernel and cokernel
of ∇ on V are both 1-dimensional, so χdR(Uan, E) = 0.

If λ ∈ K − Z, then a 1-form is in the image of ∇ on V if and only if |cn/(n− λ)|αn → 0
as n → −∞ and |cn/(n − λ)|βn → 0 as n → +∞. This always holds if λ is not a p-adic
Liouville number (see [19, §VI.1] or [25, Proposition 13.1.4]); otherwise, one shows that ∇
has infinite-dimensional cokernel on Uan, so χdR(Uan, E) is undefined.

Remark 7.20. Example 7.19 provides an example showing that the equality χdR(V, E) =
χdR(V ∩Uan, E) of Corollary 7.13 cannot hold without conditions on p-adic Liouville numbers:
in this example, for all λ, χdR(Xan, E) = 0 by Lemma 7.6; but when λ is a p-adic Liouville
number, χdR(Uan, E) is undefined.

Remark 7.21. The net result of Remark 7.18 is that in general, one can only view χx(E) as
a virtual local index of E at x, not a true local index. Nonetheless, this interpretation can be
used to predict combinatorial properties of the convergence polygon which often continue to
hold even without restrictions on p-adic exponents. For example, Theorem 6.5 corresponds
to the fact that if V is an open disc in Uan, then the dimension of the cokernel of ∇ on V
is nonnegative; this argument appears in the proof of Theorem 6.5 in the case p = 0 (see
Theorem B.4).

Remark 7.22. In light of Remark 7.21, one might hope to establish some inequalities on
χx(E). One might first hope to refine Theorem 7.23 by analogy with (7.8.1), by proving that
the measure ∆h(N ) is nonnegative; however, this fails already in simple examples such as
Example 7.25.

On the other hand, since our running hypothesis is that χ(U) ≤ 0, Theorem 7.7 and
Lemma 7.11 imply that ∑

x∈Uan

χx(E) = χdR(Xan, E) ≤ nχ(U) ≤ 0.

One might thus hope to refine Theorem 7.23 by proving that χx(E) ≤ 0 for all x ∈ Uan.
Unfortunately, this is not known (and may not even be safe to conjecture) in full generality,
but see Theorem 7.23 for some important special cases.

Theorem 7.23. Choose x ∈ Uan.

(a) If N (x) has only nonzero slopes, then χx(E) = 0.
(b) If x ∈ ΓX,Z, then χx(E) ≤ 0.
(c) If p = 0, then χx(E) ≤ 0.

Proof. For (a), see [33] or [28] or [5]; a similar argument implies (b) because in this case
the zero slopes are forced to make a nonpositive contribution to the index. For (c), see
Theorem B.7. �

Remark 7.24. The proof of Theorem 7.23 can also be used to quantify the extent to which
N fails to factor through the retract onto ΓX,Z , and hence to help identify a suitable skeleton
Γ for which the conclusion of Theorem 5.5 holds. To be precise, for x ∈ ΓX,Z , if the restriction
of N to ΓX,Z is harmonic at x, then N is constant on the fiber at x of the retraction of Xan

onto ΓX,Z .
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Example 7.25. Let h be a nonzero rational function on X, and take Z to be the pole locus
of h. Let E be the free bundle on a single generator v equipped with the connection

∇(fv) = v ⊗ (df + f dh).

For each z ∈ Z, Irrz(∇) equals the multiplicity of z as a pole of Z. By Lemma 7.11,∑
x∈Uan

χx(E) = χ(U)−m

where m is the number of poles of h counted with multiplicity.
Suppose now that there exists a point x ∈ Uan with g(Cx) > 0. By multiplying h by a

suitably large element of K, we can ensure that N (x) has positive slope. In this case, by
Theorem 7.23 we must have

χx(E) = 0 > 2− 2g(Cx)− valΓ(x).

In particular, while
∫

∆h(N ) =
∑

z∈Z Irrz(∇) ≥ 0, the measure ∆h(N ) is not necessarily
nonnegative.

8. Ramification of finite morphisms

Hypothesis 8.1. Throughout §8, let f : Y → X be a finite flat morphism of curves over K of
degree d whose restriction to U is étale and Galois with Galois group G. Let ρ : G→ GL(V )
be a faithful representation of G on an n-dimensional vector space V over K.

Definition 8.2. Equip EV = OY ⊗K V ∨ with the diagonal action of G induced by the Galois
action on OY and the action via ρ∨ on V ∨. By faithfully flat descent, the restriction of EV
to f−1(U) descends uniquely to a vector bundle E on U ; moreover, the trivial connection on
EV induces a connection ∇ on E . We are thus in the situation of Hypothesis 5.1. Note that
Irrz(∇) = 0 for all z ∈ Z.

Remark 8.3. One way to arrive at Hypothesis 8.1 is to start with a non-Galois cover
g : W → X, let f be the Galois closure, and let ρ be the representation of G induced by the
trivial representation of the subgroup of G fixing W . In this case, E is just the pushforward
of the trivial connection on g−1(U).

Definition 8.4. For L a nonarchimedean field over K, let CL denote a completed algebraic
closure of K, and let BL be the subset of XL for which x ∈ BL if and only if the preimage of x
in Y an

CL does not consist of d distinct points. By definition, the construction of BL commutes
with base extension to a completed algebraic extension, but not more generally: BL only
contains points of types 2 or 3, whereas a sufficiently large base extension would add some
points of type 1.

Theorem 8.5. For L a nonarchimedean field over K and x ∈ U(L), e−s1(N (x)) equals the
supremum of ρ ∈ (0, 1] such that Ux,ρ ∩BL = ∅.

Proof. We may assume without loss of generality that L is itself algebraically closed. If
Ux,ρ ∩BL = ∅, then the map f−1(Ux,ρ)→ Ux,ρ is a covering space map of topological spaces;
since Ux,ρ is contractible and hence simply connected, f−1(Ux,ρ) splits topologically as a
disjoint union of copies of Ux,ρ. From this it follows easily that the restriction of E to Ux,ρ is
trivial. Conversely, if this restriction is trivial, then the restriction of EV to f−1(Ux,ρ) admits
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a family of idempotent elements corresponding to the splitting of f−1(x) into d singleton sets;
these then define a splitting of f−1(Ux,ρ) into d disjoint sets, proving that Ux,ρ∩BL = ∅. �

Remark 8.6. One may view Theorem 8.5 as saying that under a suitable normalization,
e−s1(N (x)) measures the distance from x to BL. This suggests the interpretation of BL as an
“extended ramification locus” of the map f ; for maps from P1

K to itself, this interpretation
has been adopted in the context of nonarchimedean dynamics (e.g., see [20, 21]). However,
this picture is complicated by the fact that BL is not stable under base extension: even for
x ∈ BL, the “distance from x to itself” must be interpreted as a nonzero quantity. In any
case, Theorem 8.5 suggests the possibility of relating the full convergence polygon to more
subtle measures of ramification, such as those considered recently by Temkin [13, 44]. One
older result in this direction is the theorem of Matsuda; see Theorem 8.7 below.

Theorem 8.7. Assume that K has perfect residue field of characteristic p > 0. Suppose that
x ∈ Γ is of type 2, choose y ∈ f−1({x}), and suppose that H(y) is unramified over H(x).

(a) The polygon N (x) is zero.
(b) Let ~t be a branch of X at x, and let v be the point on Cx corresponding to ~t (see

Definition 6.1). Let ρ : Gal(κH(y)/κH(x)) → V be the representation induced by
ρ. Then ∂~t(N ) computes the Newton polygon associated to the (wild) ramification
filtration of ρ at v. In particular, ∂~t(h(N )) computes the Swan conductor of ρ at v.

Proof. See [31]. �

Example 8.8. Take K = Qp(ζp), X = P1
K , Z = {0,∞}, Y = P1

K , let f : Y → X be the
map z 7→ zp, identify G with Z/pZ so that 1 ∈ Z/pZ corresponds to the map z 7→ ζz on
f−1(U), and let ρ : G → GL1(K) be the character taking 1 to ζ−1

p . Then E is free on a

single generator v satisfying ∇(v) = −1
p
z−1v. This is also the connection obtained from

Example 4.3 by applying Remark 5.7.
Put ω = p−1/(p−1) = |ζp − 1|. For each x ∈ U , we may define the normalized diameter of

x as an element of [0, 1] defined as follows: choose an extension L of K such that x lifts to
some x̃ ∈ U(L), then take the infimum of all ρ ∈ (0, 1] such that Ux̃,ρ meets the inverse image
of x in Uan

L (or 1 if no such ρ exists). With this definition, for any L, the set BL consists of
Z plus all points with normalized diameter in [ωp, 1].

Now let x be the generic point of the disc |z− 1| ≤ ωp, which we can also write as |u| ≤ 1
for u = (z − 1)/(ζp − 1)p. Choose Γ to consist of the path from x to x1 together with the
paths from x1 to 0 and ∞. Let y be the unique preimage of x in Y . Let t be the coordinate
(z − 1)/(ζp − 1) on Y ; then κH(x) = Fp(u) while κH(y) = Fp(t) where t

p − t = u. For ~t the
branch of x towards x1, we have ∂~t(h(N )) = 1; as predicted by Theorem 8.7, this equals the
Swan conductor of the residual extension at ∞.

Remark 8.9. To generalize Theorem 8.7 to cases where H(y) is ramified over H(x), it
may be most convenient to use Huber’s ramification theory for adic curves [23], possibly as
refined in [13, 44]. In a similar vein, the global index formula (Theorem 7.7) is essentially the
Riemann-Hurwitz formula for the map f , in which case it should be possible to match up the
local contributions appearing in Theorem 7.7 with ramification-theoretic local contributions.

Remark 8.10. Suppose that p > 0, X = P1
K , and f extends to a finite flat morphism of

smooth curves over oK with target P1
oK

. Then E admits a unit-root Frobenius structure in
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a neighborhood of x1, from which it follows that E satisfies the Robba condition at x1. If
in addition the points of Z have distinct projections to P1

k, then by Remark 5.11, E satisfies
the Robba condition everywhere. By Remark 6.4, this implies that E has exponents in Zp,
and hence f is tamely ramified (i.e., the stabilizer of each point of Y has order coprime to
p). By contrast, if the points of Z do not have distinct projections to P1

k, then f need not
be tamely ramified; see §11.

9. Artin–Hasse exponentials and Witt vectors

We will conclude by specializing the previous discussion to cyclic covers of discs in con-
nection with the Oort local lifting problem. In preparation for this, we need to recall some
standard constructions of p-adic analysis.

Hypothesis 9.1. Throughout §9, fix a prime p and a positive integer n.

Definition 9.2. The Artin-Hasse exponential series at p is the formal power series

Ep(t) := exp

(
∞∑
i=0

tp
i

pi

)
.

Lemma 9.3. We have Ep(t) ∈ Z(p)JtK. In particular, Ep(t) converges for |t| < 1.

Proof. See for instance [25, Proposition 9.9.2]. �

Lemma 9.4. Let Z(p)〈t〉 be the subring of Z(p)JtK consisting of series
∑∞

i=0 cit
i for which the

ci converge p-adically to 0 as i→∞. Then if we define the power series

f(z, t) :=
Ep(zt)Ep(t

p)

Ep(t)Ep(ztp)
∈ Z(p)Jt, 1− zK

using Lemma 9.3, we have

f(z, t) ∈ z + (t− 1)Z(p)〈t〉J1− zK.
Proof. Write f(z, t) = exp g(z, t) with

g(z, t) =
∞∑
i=0

(zp
i − 1)(tp

i − tpi+1
)

pi

=
∞∑
i=0

∞∑
j=1

(−1)j
(
pi

j

)
(1− z)j

tp
i − tpi+1

pi

=
∞∑
j=1

(−1)j

j
(1− z)j

∞∑
i=0

(
pi − 1

j − 1

)
(tp

i − tpi+1

)

=
∞∑
j=1

(−1)j

j
(1− z)j

((
0

j − 1

)
t+

∞∑
i=1

((
pi − 1

j − 1

)
−
(
pi−1 − 1

j − 1

))
tp
i

)
.

For each fixed j,
(
pi−1
j−1

)
converges p-adically to

(−1
j−1

)
= (−1)j−1 as i → ∞. It follows that

g(z, t) ∈ Q(p)〈t〉J1− zK and

g(z, t) ≡ −
∞∑
j=1

(1− z)j

j
(mod (t− 1)Q(p)〈t〉J1− zK).
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This then implies that f(z, t) ∈ Q(p)〈t〉J1 − zK and f(z, t) ≡ z (mod (1 − t)Q(p)〈t〉J1 −
zK). Since f(z, t) also belongs to Z(p)Jt, 1 − zK by Lemma 9.3, we may deduce the claimed
inclusion. �

Definition 9.5. Let Wn denote the p-typical Witt vector functor. Given a ring R, the set
Wn(R) consists of n-tuples a = (a0, . . . , an−1), and the arithmetic operations on Wn(R) are
characterized by functoriality in R and the property that the ghost map w : Wn(R) → Rn

given by

(9.5.1) (a0, . . . , an−1) 7→ (w0, . . . , wn−1), wi =
i∑

j=0

pjap
i−j

j

is a ring homomorphism for the product ring structure on Rn. For any ideal I of R, let Wn(I)
denote the subset of Wn(R) consisting of n-tuples with components in I; since Wn(I) =
ker(Wn(R)→ Wn(R/I)), it is an ideal of Wn(R).

Various standard properties of Witt vectors may be derived by using functoriality to reduce
to polynomial identities over Z, then checking these over Q using the fact that the ghost
map is a bijection if p−1 ∈ R. Here are two key examples.

(i) Define the Teichmüller map sending r ∈ R to [r] := (r, 0, . . . , 0) ∈ Wn(R). Then this
map is multiplicative: for all r, s ∈ R, [rs] = [r][s].

(ii) Define the Verscheibung map sending a ∈ Wn(R) to V (a) := (0, a0, . . . , an−2) ∈
Wn(R). Then this map is additive: for all a, b ∈ Wn(R), Vn(a+ b) = Vn(a) + Vn(b).

Definition 9.6. In case R is an Fp-algebra, the Frobenius endomorphism ϕ : R→ R extends
by functoriality to Wn(R) and satisfies

pa = (V ◦ ϕ)(a) (a ∈ R);

see for instance [24, § 0.1]. It follows that for general R, if we define the map σ sending
a ∈ Wn(R) to σ(a) = (ap0, . . . , a

p
n−1) ∈ Wn(R), then

(9.6.1) pa− (V ◦ σ)(a) ∈ Wn(pR) (a ∈ Wn(R)).

Beware that σ is in general not a ring homomorphism.

Definition 9.7. By Lemma 9.3, we have

En,p(t) :=
Ep(ζpnt)

Ep(t)
= exp

(
n−1∑
i=0

(ζpn−i − 1)
tp
i

pi

)
∈ Z(p)[ζpn ]JtK.

We may also define

En,p(a) :=
n−1∏
i=0

En−i,p(ai) ∈ Z(p)[ζpn ]Ja0, . . . , an−1K,

which we may also write as

(9.7.1) En,p(a) = exp

(
n−1∑
i=0

(ζpn−i − 1)
wi
pi

)
for wi as in (9.7.1). Consequently, in Z(p)[ζpn ]Ja0, . . . , an−1, b0, . . . , bn−1K,

(9.7.2) En,p(a)En,p(b) = En,p(a+ b).
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Definition 9.8. By Lemma 9.3, we may define the formal power series

Fn,p(t) :=
En,p(t)

En,p(tp)
= exp

(
n−1∑
i=0

(ζpn−i − 1)(tp
i − tpi+1

)

pi

)
∈ Z(p)[ζpn ]JtK

and

Fn,p(a) :=
En,p(a)

En,p(σ(a))
=

n−1∏
i=0

Fn−i,p(ai) ∈ Z(p)[ζpn ]Ja0, . . . , an−1K.

By (9.7.1), in Z(p)[ζpn ]Ja0, . . . , an−1, b0, . . . , bn−1K we have

(9.8.1) Fn,p(a)Fn,p(b) = Fn,p(a+ b)En,p(σ(a+ b) + σ(a) + σ(b)).

We will see shortly (Lemma 9.10) that Fn,p(t) has radius of convergence greater than 1, which
implies an analogous assertion for Fn,p(a). For p > 2, this is shown in [31, Proposition 1.10]
using a detailed computational argument; our argument follows the more conceptual ap-
proach given in [36, Theorem 2.5].

Definition 9.9. By Lemma 9.3, we may define the formal power series

Gn,p(a) =
En,p(pa)

En−1,p(a)
∈ Z(p)[ζpn ]Ja0, . . . , an−1K.

By (9.7.2),

(9.9.1) Gn,p(a)Gn,p(b) = Gn,p(a+ b).

We also have

(9.9.2) Gn,p(a) = En,p(pa− (0, ap0, . . . , a
p
n−2))Fn−1,p(a)−1.

Lemma 9.10. (a) We have

Gn,p(a) ∈ Z(p)[ζpn ]J(ζpn − 1)a0, . . . , (ζp − 1)an−1K.

(b) The power series Fn,p(a) converges on a polydisc with radius of convergence strictly
greater than 1.

Proof. Write

Gn,p(a) =
n−1∏
j=0

exp

(
n−j−1∑
i=0

(p(ζpn−j−i − 1)− (ζpn−j−1−i − 1))
ap

i

j

pi

)

=
n−1∏
j=0

exp

(
n−j−1∑
i=0

(ζpn−j−i − 1)(p− 1− ζpn−j − · · · − ζp−1
pn−j)

ap
i

j

pi

)

=
n−1∏
j=0

En,p

(
(p− 1− [ζpn−j ]− · · · − [ζp−1

pn−j ])[aj]
)
.

Note that p−1−[ζpn−j ]−· · ·−[ζp−1
pn−j ] maps to zero inWn−j(Fp) and so belongs toWn−j((ζpn−j−

1)Z(p)[ζpn−j ]). This proves (a). To prove (b), combine (a) with (9.9.2) and (9.6.1). �

Lemma 9.11. For m ∈ Z, in Zp[ζpn ]Ja0, . . . , an−1, b0, . . . , bn−1K we have

(9.11.1) Fn,p(a+ b+m)Fn,p(a)−1En,p(σ(a+ b+m)− σ(a)− b−m) = ζmpn .
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Note that the presence of m prevents us from heedlessly applying (9.7.2), because for
instance En,p(m) does not make sense. (We like to think of this as an example of conditional
convergence in a nonarchimedean setting.) Similarly, we must work over Zp rather than Z(p).

Proof. Convergence of Fn,p(a + b + m) is guaranteed by Lemma 9.10. Convergence of
En,p(σ(a+ b+m)− σ(a)− b−m) is guaranteed by Lemma 9.3 and the fact that

σ(a+ b+m)− σ(a)− b−m ∈ W ((ζpn − 1)Zp[ζpn ]Ja0, . . . , an−1, b0, . . . , bn−1K).

Thus the left side of (9.11.1) is well-defined. Using (9.7.2), we see that this quantity is
constant as a power series in a0, . . . , an−1, b0, . . . , bn−1; it thus remains to prove that

(9.11.2) Fn,p(m)En,p(σ(m)−m) = ζmpn .

Using (9.7.2) and (9.8.1), we see that for m,m′ ∈ Z,

Fn,p(m)En,p(σ(m)−m)Fn,p(m
′)En,p(σ(m′)−m′)

= Fn,p(m+m′)En,p(σ(m+m′)− σ(m)− σ(m′))En,p(σ(m)−m)En,p(σ(m′)−m′)
= Fn,p(m+m′)En,p(σ(m+m′)−m−m′),

so both sides of (9.11.2) are multiplicative in m. It thus suffices to check (9.11.2) for m =
1 = (1, 0, . . . ), in which case σ(m) = m and so the desired equality becomes Fn,p(1) = ζpn .
This follows from Lemma 9.4 by evaluating at z = ζpn . �

10. Kummer-Artin-Schreier-Witt theory

In further preparation for discussion of the Oort local lifting problem, we describe a form
of Kummer-Artin-Schreier-Witt theory for cyclic Galois extensions of a power series field.

Hypothesis 10.1. Throughout §10, fix a positive integer n, assume that K is discretely
valued, the residue field k of K is algebraically closed of characteristic p > 0, and K contains
a primitive pn-th root of unity ζpn . Put F = k((z)).

Definition 10.2. For ρ ∈ (0, 1), let A(ρ, 1) be the annulus ρ < |z| < 1 in P1
K ; the analytic

functions on A(ρ, 1) can be viewed as certain Laurent series in z. The union of the rings
O(A(ρ, 1)) over all ρ ∈ (0, 1) is called the Robba ring over K and will be denoted R. (This
ring can be interpreted as the local ring of the adic point of P1,an

K specializing x1 in the
direction towards 0.)

Let Rbd be the subring of R consisting of formal sums with bounded coefficients; these
are exactly the elements of R which define bounded analytic functions on A(ρ, 1) for some
ρ ∈ (0, 1). The ring Rbd carries a multiplicative Gauss norm defined by∣∣∣∣∣∑

i∈Z

aiz
i

∣∣∣∣∣ = max
i
{|ai|};

let Rint be the subring of Rbd consisting of elements of Gauss norm at most 1.

Lemma 10.3. The ring Rint is a henselian discrete valuation ring. Consequently, Rbd is a
henselian local field with residue field F .

Proof. See [31, Proposition 3.2]. �
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We next prepare to formulate the comparison between Kummer theory and Artin-Schreier-
Witt theory by introducing the two sides of the comparison.

Definition 10.4. For any field L of characteristic not equal to p, taking Galois cohomology
on the exact sequence

1→ µpn → L
× •pn→ L

× → 1

of GL-modules gives the Kummer isomorphism

L×/L×p
n ∼= H1(GL, µpn)

because H1(GL, L
×

) = 0 by Noether’s form of Hilbert’s Theorem 90.
In the case L = Rbd, by Lemma 10.3 we have a surjection GL → GF identifying GF

with the quotient of the maximal unramified extension of L. We thus obtain a restriction
map H1(GF , µpn) → H1(GL, µpn) and thus a map H1(GF , µpn) → L×/L×p

n
. Note that GF

acts trivially on µpn , so we may identify µpn as a GF -module with Z/pnZ by identifying our
chosen primitive pn-th root of unity ζpn ∈ µpn with 1 ∈ Z/pnZ. We thus end up with a
homomorphism

(10.4.1) H1(GF ,Z/pnZ)→ (Rbd)×/(Rbd)×p
n

.

Definition 10.5. Consider the exact sequence

0→ Z/pnZ = Wn(Fp)→ Wn(F sep)
1−ϕ→ Wn(F sep)→ 0

where ϕ denotes the Frobenius endomorphism of Wn(F sep). The additive group Wn(F sep) is
a successive extension of copies of the additive group of F sep; since H1(GF , F

sep) = 0 by the
additive version of Theorem 90, we also have H1(GF ,Wn(F sep)) = 0. We thus obtain the
Artin-Schreier-Witt isomorphism

(10.5.1) coker(1− ϕ,Wn(F )) ∼= H1(GF ,Z/pnZ).

Combining this isomorphism with the map (10.4.1) derived from the Kummer isomorphism,
we obtain a homomorphism

(10.5.2) coker(1− ϕ,Wn(F ))→ (Rbd)×/(Rbd)×p
n

.

We note in passing how Swan conductors appear in the Artin-Schreier-Witt isomorphism.

Lemma 10.6. For a ∈ Wn(F ), let ρ : GF → K× be the character corresponding via (10.5.1)
to the class of a in coker(ϕ−1,Wn(F )). For j = 0, . . . , n−1, let −mj be the t-adic valuation
of aj, and assume that mj is not a positive multiple of p. Then the Swan conductor of ρ
equals

max{0,m0p
n−1,m1p

n−2, . . . ,mn−1}.
In particular, if bj is the Swan conductor of ρ⊗p

n−j
, then bj ≥ pbj−1 for j = 1, . . . , n.

Proof. By hypothesis, if mj is positive then it is not divisible by p, so mjp
n−1−i has p-adic

valuation n−i−1. Consequently, any two of the quantities m0p
n−1,m1p

n−2, . . . ,mn−1, if they
are nonzero, must be distinct. It thus suffices to check the claim in case a is a Teichmüller
element [a] for some a ∈ F of t-adic valuation −m for some integer m which is positive
and not divisible by p. By splitting a into powers of t, we may further reduce to the case
a = ct−m. Using the compatibility of Swan conductors with tame base extensions, we may
further reduce to the case a = t−1. In case n = 1, this case is easily checked by direct
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computation; the case n > 1 can then be reduced to this case using Herbrand’s formulas
relating upper ramification numbers with passage to subgroups [43, Chapter IV]. �

We now make explicit the relationship between the Kummer and Artin-Schreier-Witt
isomorphisms.

Theorem 10.7 (Matsuda). The homomorphism (10.5.2) is induced by a homomorphism

(10.7.1) Wn(Rint)→ (Rbd)×, a 7→ En,p(p
na).

Proof. By writing

(10.7.2) En,p(p
na) = exp

(
n−1∑
i=0

pn−i(ζpn−i − 1)tp
i

)
,

we may interpret En,p(p
na) as an element of Rbd. By (9.7.2), the map (10.7.1) is a homomor-

phism. Given a, choose a minimal finite separable extension S of F such that there exists
b ∈ Wn(S) with

b− ϕ(b) = a.

(This amounts to forming a tower of Artin-Schreier extensions over F .) Apply Lemma 10.3
to construct a finite étale algebra S int over Rint with residue field S. Choose a lift b ∈ S int

of b and put

f = Fn,p(b)En,p(a+ σ(b)− b) ∈ S int.

Then fp
n

= En,p(p
na).

On one hand, the image of a in coker(ϕ − 1,Wn(F )) corresponds to the element of
H1(GF ,Z/pnZ) which factors through H1(Gal(S/F ),Z/pnZ) and sends g ∈ Gal(S/F ) to
the integer m ∈ Z/pnZ for which ϕ(b) = b+m. On the other hand, we have g(b) = b+m+ c
for some c ∈ W ((ζpn − 1)Rint

n ), and so

g(f) = Fn,p(b+ c+m)En,p(a+ σ(b+ c+m)− b− c−m)

= Fn,p(b+ c+m)Fn,p(b)
−1En,p(σ(b+ c+m)− σ(b)− c−m)En,p(a+ σ(b)− b)

= ζmpnf

by Lemma 9.11. It follows that (10.7.1) induces (10.5.2) as desired. �

Remark 10.8. By comparing a character with its p-th power, we may deduce from Theo-
rem 10.7 that

En,p(p
na)

En−1,p(pn−1a)
∈ (Rbd)×p

n−1

.

This may also be seen directly from Lemma 9.10 by rewriting the left side as Gn−1,p(a)p
n−1

.

11. Automorphisms of a formal disc

To conclude, we use Kummer-Artin-Schreier-Witt theory to translate the Oort local lifting
problem into a question about the construction of suitable connections on P1

K , and use this
interpretation to describe existing combinatorial invariants connected with the Oort problem
in terms of convergence polygons.

Hypothesis 11.1. Throughout §11, retain Hypothesis 10.1 and additionally fix a ∈ Wn(Rint).
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Definition 11.2. Let ρ : GF → µpn be the character corresponding to a via the maps
Wn(Rint) → coker(ϕ − 1,Wn(F )) ∼= H1(GF , µpn) (the latter isomorphism being (10.5.1)).

For i = 1, . . . , n, let bi be the Swan conductor of ρ⊗p
n−i

.
For x1 ∈ P1,an

K as usual, we may lift ρ uniquely to an unramified character ρ̃ : GH(x1) → µpn .
By Katz’s theory of canonical extensions (in this context see [31]), this character arises from
a finite étale Galois cover of a subspace of P1,an

K of the form |z| > ρ for some ρ ∈ (0, 1). We
may then proceed as in Definition 8.2 to obtain a rank 1 bundle En with connection on this
subspace; this can be described explicitly as the free vector bundle on a single generator v
equipped with the connection

∇(v) =
n−1∑
i=0

n−i−1∑
j=0

(ζpn−j − 1)ap
j−1
i v ⊗ dai

Formally, we have dv = v ⊗ d logEn,p(a).

For i = 1, . . . , n, put Ei = E⊗pn−in . Then Ei corresponds to the character ρ⊗p
n−i

of order pi

in a similar fashion.

Definition 11.3. Let S be the fixed field of ker(ρ); we may identify S with k((u)) for some
parameter u. The action of GF defines a k-linear automorphism of k((u)) of order pn, which
induces an automorphism τ of kJuK. A solution of the lifting problem for ρ is a lifting of τ
to an oK-linear automorphism τ̃ of oKJuK.

Conjecture 11.4 (Oort). A solution of the lifting problem exists for every ρ.

A spectacular breakthrough on this problem has been made recently in work of Obus–
Wewers and Pop [32, 35].

Theorem 11.5. For fixed ρ, a solution of the lifting problem exists over some extension of
K.

We will not say anything more here about the techniques used to prove Theorem 11.5.
Instead, we describe an equivalence between solutions of the lifting problem for ρ and ex-
tensions of the connection on En.

Definition 11.6. Suppose that τ̃ is a solution of the lifting problem. Then τ̃ gives rise to
a finite étale cover of the disc |z| < 1, which may be glued together with the cover from
Definition 11.2 to give a finite cover fn : Yn → X with X = P1

K , such that x1 has a unique

preimage. For i = 1, . . . , n, let fi : Yi → X be the cover corresponding to ρp
n−i

in similar
fashion, and let Zi be the ramification locus of fi; also put Z0 = ∅. By the Riemann-Hurwitz
formulas in characteristic 0 and p, we have

2− 2g(Yi) = 2pi −
i∑

j=1

(pi − pj−1)(length(Zj)− length(Zj−1))

= 2pi −
i∑

j=1

(pj − pj−1)bj.

Solving these equations yields

length(Zi) = bi + 1 (i = 1, . . . , n).
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Let Ni be the convergence polygon of Ei. For each x ∈ Zi − Zi−1, En is regular at x
with exponent m/pn−i−1 for some m ∈ Z − pZ; by Theorem 6.2, Nn is constant in some
neighborhood of x. Using similar techniques, we can see that for y in some neighborhood of
x,

s1(N (x)) =
p

p− 1
log p.

Using Theorem 7.23, we may deduce that the graph Γ can be taken to be the union of the
paths from the elements of Z to x1. Moreover, for each x ∈ Γ− {x1}, for ~t the branch of x
towards x1, ∂~t = m− 1 where m is the length of the subset of Z dominated by x. Note that
the continuity of N now imposes some combinatorial constraints on the relative positions of
the elements of Z; these constraints encode the data of the Hurwitz tree associated to τ̃ [1].

Definition 11.7. Conversely, suppose X = P1
K ; Z is contained in the open unit disc; E is

a rank 1 vector bundle with connection on U = X − Z; for each z ∈ Z, ∇ is regular at z
with exponent in p−nZ; and for some ρ ∈ (0, 1), the restriction of E to the space |z| > ρ is
isomorphic to En. Using Dwork’s transfer theorem, we deduce that the connection on E⊗pn

is globally trivial; consequently, E corresponds to a solution of the lifting problem.

Remark 11.8. For a given ρ, it should be possible to construct a moduli space of solutions of
the lifting problem in the category of rigid analytic spaces over K. Theorem 11.5 would then
imply that this space is nonempty. Given this fact, it may be possible to derive additional
results on the lifting problem, e.g., to resolve the case of dihedral groups. For p > 2, this
amounts to showing that if τ anticommutes with the involution z 7→ −z, then the action of
the involution z 7→ −z fixes some point of the moduli space.

Appendix A. Monotonicity in a disc

In this appendix, we give some technical arguments needed for the proof of Theorem 6.5
in the case p > 0, which do not appear elsewhere in the literature.

Definition A.1. For I a subinterval of [0,+∞), let RI be the ring of rigid analytic functions
on the space |t| ∈ I within the affine t-line over K, as in [28, Definition 3.1.1].

Hypothesis A.2. Throughout Appendix A, assume p > 0, and let (M,D) be a differential
module of rank n over R[0,β).

Definition A.3. For I a subinterval of [0, β), write MI as shorthand for M ⊗R[0,β)
RI .

For r > − log β and i = 1, . . . , n, we define the functions fi(M, r) and Fi(M, r) as in [25,
Notation 11.3.1].

Lemma A.4. Assume p > 0. Suppose that M admits a basis e1, . . . , en. Choose α ∈
(0, β). Suppose that M[α,β),M

∨
[α,β) admit differential submodules free on the single respective

generators v,v∨, and that

D(v) = λt−1v, D(v∨) = −λt−1v∨, 〈v,v∨〉 = 1

for some λ ∈ oK (if p = 0) or λ ∈ Zp (if p > 0). If

〈v, e∨i 〉〈ej,v∨〉 ∈ R[0,β) (i, j = 1, . . . , n),

then λ ∈ Z, t−λv ∈ H0(M), tλv∨ ∈ H0(M∨).
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Proof. By the given hypothesis, the intersection within M[α,β) of M with the R[α,β)-span
of v is a nonzero differential submodule M0 of rank 1. By [25, Example 9.5.2], we have
f1(M0, r) = 0 for − log δ ≤ r ≤ − log γ. Choose ε ∈ (γ, δ); by the Dwork transfer theorem
[25, Theorem 9.6.1], M0 admits a nonzero horizontal element w. Write v = cw for some
c ∈ R[α,β), then write c =

∑
i∈Z cit

i; the equality D(v) = λt−1v implies that ici = λci for all
i. Since v 6= 0, we must have λ ∈ Z and t−λv ∈M ; similarly, tλv∨ ∈M∨. �

Lemma A.5. Assume p > 0. Suppose that M admits a basis e1, . . . , en. Choose α ∈
(0, β). Let N ⊕ P be a direct sum decomposition of M[α,β) as a differential module such
that rank(N) = m, and use this decomposition to identify N∨ with a submodule of M∨

[α,β).

Suppose that there exist v ∈ ∧mN[α,β), v∨ ∈ ∧mN∨[α,β) satisfying

D(v) = λt−1v, D(v∨) = −λt−1v∨, 〈v,v∨〉 = 1

for some λ ∈ oK (if p = 0) or λ ∈ Zp (if p > 0). If for all 1 ≤ i1 < · · · < im ≤ n,
1 ≤ j1 < · · · < jm ≤ n we have

〈v, e∨i1 ∧ · · · ∧ e∨im〉〈ej1 ∧ · · · ∧ ejm ,v〉 ∈ K〈t/δ〉,

then N,N∨ descend to respective differential submodules of M,M∨.

Proof. Immediate from Lemma A.4. �

Lemma A.6. Assume p > 0. Suppose that β > 1 and that H0(M[0,δ)) = 0 for all δ ∈ (1, β).
Then for i = 1, . . . , n, the left slope of Fi(M, r) at r = 0 is nonpositive.

Proof. There is no harm in reducing β, so by [25, Theorem 11.3.2(a)] we may ensure that
for i = 1, . . . , n, fi(M, r) is affine for − log β < r ≤ 0. Since R[0,δ] is a principal ideal domain
for all δ > 0, we may also ensure that M admits a basis e1, . . . , en.

Choose m ∈ {0, . . . , n} such that for i ∈ {1, . . . , n}, i > n−m if and only if fi(M, r) = r
for r in some left neighborhood of 0. We proceed by induction on m. If m = 0, then the claim
follows immediately from [25, Theorem 11.3.2(d)]; we may thus assume m > 0 hereafter.

By [28, Lemma 3.7.3], M(1,β) admits a spectral decomposition M0 ⊕M1 ⊕ · · · in which
M0 is the Robba component; in particular, rank(M0) = m. By [25, Theorem 13.6.1], we can
further ensure that ∧mM0 admits a generator v such that D(v) = λt−1v for some λ ∈ Zp.
Using the direct sum decomposition of M(1,β), we may view the dual generator v∨ of ∧mM∨

0

as an element of M∨
(1,β).

Note that M0 cannot descend to a differential submodule N of M , as otherwise the Dwork
transfer theorem [25, Theorem 9.6.1] would imply that N is trivial and hence H0(M) 6= 0.
Consequently, Lemma A.5 implies the existence of 1 ≤ i1 < · · · < im ≤ n, 1 ≤ j1 < · · · <
jm ≤ n such that for

ci1,...,im = 〈v, e∨i1 ∧ · · · ∧ e
∨
im〉

c∨j1,...,jm = 〈ej1 ∧ · · · ∧ ejm ,v∨〉,

we have ci1,...,imc
∨
j1,...,jm

/∈ R[0,β). We can thus choose a nonnegative integer h such that the

coefficient of t−1 in thci1,...,imc
∨
j1,...,jm

is a nonzero element µ ∈ K.
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For ν ∈ K, let (Mν , Dν) be the differential module on the same underlying module as M ,
but with

Dν(ei) =


D(ei) + νthej1 i = i1

D(ei) + νejk i = ik (k = 2, . . . ,m)

D(ei) otherwise.

Choose γ, δ with 1 < γ < δ < β. Using [25, Corollary 6.5.4, Theorem 10.5.1], we see that
for any ε > 0, for ν sufficiently small,

fi(Mν , r)

{
= fi(M, r) (i = 1, . . . , n−m)

≤ r + ε (i = n−m+ 1, . . . , n)
(r ∈ [− log δ,− log γ]).

Suppose that there exist ν ∈ K arbitrary close to 0 such that fn−m+1(Mν ,− log γ) > − log γ.
Let g(ν) be the slope of the segment in R2 from (− log δ, Fi(Mν , log δ)) to (− log γ, Fi(Mν , log γ)).
For i = 1, . . . , n, by [25, Theorem 11.3.2(e)] the function Fi(Mν , r) is convex, so g(ν) is no
greater than the left slope of Fi(Mν , r) at r = − log γ. By the induction hypothesis, it follows
that g(ν) ≤ 0; by taking the limit as ν → 0, we deduce the desired result.

It thus remains to derive a contradiction under the contrary assumption: for ν sufficiently
small, fn−m+1(Mν ,− log γ) = − log γ. By a similar argument, we may also assume that for
ν sufficiently small, fn−m+1(Mν ,− log δ) = − log δ. Since Fn−m+1(Mν , r) is convex for all i
and fi(Mν , r) = fi(M, r) is affine for i = 1, . . . , n−m, it follows that fn−m+1(Mν , r) = r for
r ∈ [− log δ,− log γ]. Consequently, Mν,(γ,δ) also admits a spectral decomposition in which
the Robba component Mν,0 has rank m. By tracing through the proof of [25, Theorem 12.4.1],
we see that ∧mMν,0 admits a generator of the form v + νw, where w is a locally analytic
function of ν. We may further choose w so that the action of D′ on v + νw is given by
multiplication by λ+νξt−1, where ξ ∈ K is a locally analytic function of ν with ξ(0) = µ 6= 0.
We may thus arrange for νξ to equal any sufficiently small value in K, and in particular a
value not in Zp; however, the fact that ∧mMν,0 satisfies the Robba condition now contradicts
[25, Example 9.5.2]. We now have the desired contradiction, completing the proof. �

Definition A.7. Let Dβ be the Berkovich disc |t| < β over K. For x ∈ Dβ, define the real
numbers si(M,x) for i = 1, . . . , n as in [28, Definition 4.3.2]; note that they are invariant
under extension of K [28, Lemma 4.3.3].

Lemma A.8. For ρ ∈ (0, β), let xρ be the generic point of the disc |t| ≤ ρ. Then for
i = 1, . . . , n, the function ρ 7→ s1(M,xρ) · · · si(M,xρ) is nonincreasing in ρ.

Proof. For r > − log β, define the functions

gi(M, r) = − log si(M,xe−r)

Gi(M, r) = g1(M, r) + · · ·+ gi(M, r).

By [28, Theorem 4.5.15], the functions gi(M, r) are continuous and piecewise affine; it thus
suffices to check that the right slope of Gi(M, r) is nonpositive for i = 1, . . . , n. By [28,
Proposition 4.3.7], we have

fi(M, r) = max{r, gi(M, r)} (i = 1, . . . , n).

Put m = dimK H
0(M). then si(M,x) = β for i = n −m + 1, . . . , n and x ∈ D. Moreover,

if we write N for the span of H0(M), then si(M,x) = si(M/N, x) for i = 1, . . . , n − m
and x ∈ D. Consequently, we may reduce to the case where H0(M) = 0; this implies
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in turn that H0(M[0,δ)) = 0 for all δ ∈ (0, β] sufficiently close to β. Consequently, for
r ∈ (− log β,− log δ) we cannot have gi(M, r) < r (see [28, Remark 4.3.4]) so we must in
fact have gi(M, r) = fi(M, r). We may thus deduce the claim from Lemma A.6. �

Theorem A.9. For x, y ∈ Dβ such that x dominates y, for i = 1, . . . , n, we have

s1(M,x) · · · si(M,x) ≤ s1(M, y) · · · si(M, y).

In particular, the conclusion of Theorem 6.5 holds for p > 0.

Proof. This follows from Lemma A.8 thanks to the invariance of the si under base extension.
�

Appendix B. Convexity

In this appendix, we give some additional technical arguments needed for the proof of
Theorem 6.5 in the case p = 0 and the proof of Theorem 7.23(c), which do not appear
elsewhere in the literature.

Hypothesis B.1. Throughout Appendix B, assume p = 0, and let (M,D) be a differential
module of rank n over R[0,β).

We begin with a variant of Theorem 7.23.

Lemma B.2. The right slope of Gi(M, r) at r = − log β equals − dimK H
1(M), provided

that at least one of the two is finite.

Proof. Apply [34, Theorem 3.5.2]. �

This gives an analogue of Lemma A.8 in the case p = 0.

Lemma B.3. For ρ ∈ (0, β), let xρ be the generic point of the disc |t| ≤ ρ. Then for
i = 1, . . . , n, the function ρ 7→ s1(M,xρ) · · · si(M,xρ) is nonincreasing in ρ.

Proof. The case i = n is immediate from Lemma B.2. To deduce the case i < n, it suffices
to work locally around some ρ0 = e−r0 , and to check only those values of i for which the
left slopes of gi(M, r0) > gi+1(M, r0). For λ ∈ K, let Mλ be the differential module obtained
from M by adding λ to D. Since Gi(M, r) is insensitive to extension of the field K, we
may ensure that in some neighborhood of r0, we have gj(M, r) = gj(Mλ, r) for j ≤ i while
gj(Mλ, r) is constant for j > i. We thus deduce the claim from the case i = n. �

This yields the analogue of Theorem A.9 for p = 0.

Theorem B.4. For x, y ∈ Dβ such that x dominates y, for i = 1, . . . , n, we have

s1(M,x) · · · si(M,x) ≤ s1(M, y) · · · si(M, y).

In particular, the conclusion of Theorem 6.5 holds for p > 0.

Proof. This follows from Lemma B.3 thanks to the invariance of the si under base extension.
�

We next proceed towards Theorem 7.23(c).

Definition B.5. Define the convergence polygon N of M as in Definition 5.3, using the
same disc at every point. Define the modified convergence polygon N ′ using maximal discs
not containing 0.
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Lemma B.6. Assume p = 0. For i = 1, . . . , n, for x ∈ Dβ, we have ∆hi(N )x ≥ 0.

Proof. By base extension, we may reduce to the case x = x1. As in the proof of Lemma B.3,
we may further reduce to the case i = n. We may further reduce to the case where
H0(M[0,δ)) = 0 for all δ ∈ (1, β).

Choose a nonempty set W of K-rational points of Dβ with the following properties.

(a) For each w ∈ W , Uw,1 is a branch of X at x1, which we also denote by ~tw.

(b) The branches ~tw for w ∈ W are pairwise distinct.
(c) Let ~t∞ be the branch of X at x in the direction of ΓX,Z . Then for all branches ~t of

X at x1, we have ∂~t(N ) = 0 unless ~t = ~t∞ or ~t = ~tw for some w ∈ W .

Let Rw,I be the ring of rigid analytic functions on the space |z − w| ∈ I, and put Mw,I =
M ⊗R[0,β)

Rw,I . Then by Lemma B.2, to prove the desired result, it suffices to check that for

any γ ∈ (0, 1), δ ∈ (1, β) sufficiently close to 1,

dimK H
1(M[0,δ)) ≥

∑
w∈W

dimK H
1(Mw,[0,γ)).

It would hence also suffice to prove surjectivity of the map

H1(M[0,δ))→
∑
w∈W

H1(Mw,[0,γ)),

or equivalently of the map

(B.6.1) H1(M(γ′,δ))→
⊕
w∈W

H1(Mw,(γ′,γ))

for some γ′ ∈ (0, γ). By choosing γ′ sufficiently close to γ, we may apply [28, Lemma 3.7.6] to
see that Mw,(γ′,γ) → H1(Mw,(γ′,γ)) is a strict surjection of Fréchet spaces, where H1(Mw,(γ′,γ))
carries the usual topology on a finite-dimensional K-vector space. Since the map

M(γ′,δ) →
⊕
w∈W

Mw,(γ′,γ)

has dense image, so then does (B.6.1), proving the claim. �

Theorem B.7. The conclusion of Theorem 7.23(c) holds.

Proof. By Theorem 7.23(b), we may assume x /∈ ΓX,Z ; the claim thus reduces to Lemma B.6.
�

Remark B.8. It may be possible to adapt the proof of Theorem B.7 to the case p > 0 by
establishing a relative version of Lemma B.2. In the notation of the proof of Lemma B.6,
one might hope to prove that

H1(M(γ′,δ)/
⊕
w∈W

Mw,(γ′,γ)) = 0

and to relate this vanishing to the Laplacian, bypassing the potential failure of finite-
dimensionality by the individual cohomology groups.
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Fourier 43 (1993), 1545–1574.
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