PROBLEM SET 2 - SPECIAL DIVISORS ON CHAIN OF LOOPS

DHRUV AND YOAV

In this worksheet, we will largely be interested in the so-called "chain of g loops", depicted in the figure below. Our goal will be to establish a correspondence between Young tableaux and special divisors on the chain.

FIGURE 1. The chain of g loops.

- (1) Show that the chain is hyperelliptic if and only if $m_i = \ell_i$ for $i = 2, \ldots, g 1$. (2) Let Γ be a chain of 4 loops with generic edge lengths (that is, $\frac{m_i}{\ell_i} \in \mathbb{R} \setminus \mathbb{Q}$). Up to equivalence, there are precisely two divisors of degree 3 and rank 1. Find them. *Hint:* Try to first find a configuration of two chips to the left of w_1 , such that at least one chip can be moved to the third loop.
- (3) What happens when the lengths above are not generic? For instance, if the chain is hyperelliptic, what are the divisors of degree 3 and rank 1?
- (4) Let Γ be the loop of 3 loops.

FIGURE 2. The chain of 3 loops.

How many g_3^1 's are there? The answer may or may not be finite and may depend on the edge length.

Let Γ be a chain of g loops. Fix integers d and r, denote h = g - d + r, and let

$$\rho(g, r, d) = g - (r+1)h.$$

Date: July 29, 2016.

Generic edge length, $\rho = 0$. By generic we mean that the ratio between the upper and lower arc of each loop is an irrational number. Consider a Young tableaux with r+1columns and h rows, filled with integers $1, \ldots, g$ (confirm that since $\rho = 0$, the number of boxes equals g). Define a divisor D_{λ} as follows. Let $i \in \{1, \ldots, g\}$. If it appears on the rightmost column of λ , then the *i*-th loop will not contain a chip. Otherwise, let c_i be the column number that contains *i* (counted from the left), d_i the row number (counted from the top), and e_i the number indices smaller than *i* on the rightmost column. Now, place a chip on the *i*-th loop at distance $(r - c_i + d_i - e_i) \cdot m_i$ counter clockwise from the rightmost vertex of the loop. Place the remaining chips (confirm that there are precisely r of them when $\rho = 0$) at the leftmost vertex.

(1) Find the divisors associated with the following tableaux:

 $1 2 \cdots g$

(Hint: you don't actually need to follow the construction for the last case).

- (2) Show that for each k = 0, ..., r, the divisor D_{λ} has a representative with r k chips at w_0 and k chips at v_{g+1} .
- (3) Prove that D_{λ} as constructed above has degree d and rank exactly r.
- (4) Prove that different tableaux yield non-equivalent divisors.
- (5) Show that every g_d^r corresponds to a tableaux as above. Hint: consider the w_0 reduced divisor, and start passing chips from left to right.
- (6) Given a tableaux λ , which tableaux corresponds to the divisor $K D_{\lambda}$?
- (7) Show that there are exactly

$$g!\prod_{i=0}^r \frac{i!}{(h+i)!}$$

divisor classes of degree d and rank r.

(8) Show that when $\rho < 0$ there are no divisors of degree d and rank r.

Generic edge length, $\rho > 0$. In this case, the genus is strictly larger than the number of boxes. Construct a divisor D_{λ} by placing chips on loops as before when an index appears in the tableaux, and a chip at an arbitrary position on a loop corresponding to an index that does not appear in the tableaux.

- (1) Check that the number of chips placed at w_0 is still r.
- (2) Show that D_{λ} has rank r.
- (3) Show that the set of divisors of degree d and rank r has dimension ρ (we will not provide a precise description to the space of g_d^r 's, but there is a very natural way of doing that).

Any edge length. Let t_i be the torsion order of m_i in the group $\mathbb{Z}/(\ell_i + m_i)\mathbb{Z}$. In other words, it is the smallest integer such that $t_i \cdot m_i$ is a multiple integer of the length of the entire loop, and is 0 if such an integer doesn't exist. Consider a tableaux in which numbers are allowed to repeat, as long as the following rule is preserved: if $i = \lambda(a, b) = \lambda(c, d)$ then $a - b \equiv c - d \mod t_i$, and construct a divisor D_{λ} following the recipe above.

- (1) Show that a divisor constructed this way is well defined.
- (2) Find edge lengths for which the following tableaux are admissible, and construct the corresponding divisors:

(3) Show that D_{λ} has rank r.