PROBLEM SET 2 - SPECIAL DIVISORS ON CHAIN OF LOOPS

DHRUV AND YOAV

In this worksheet, we will largely be interested in the so-called "chain of g loops", depicted in the figure below. Our goal will be to establish a correspondence between Young tableaux and special divisors on the chain.

Figure 1. The chain of g loops.
(1) Show that the chain is hyperelliptic if and only if $m_{i}=\ell_{i}$ for $i=2, \ldots, g-1$.
(2) Let Γ be a chain of 4 loops with generic edge lengths (that is, $\frac{m_{i}}{\ell_{i}} \in \mathbb{R} \backslash \mathbb{Q}$). Up to equivalence, there are precisely two divisors of degree 3 and rank 1 . Find them. Hint: Try to first find a configuration of two chips to the left of w_{1}, such that at least one chip can be moved to the third loop.
(3) What happens when the lengths above are not generic? For instance, if the chain is hyperelliptic, what are the divisors of degree 3 and rank 1 ?
(4) Let Γ be the loop of 3 loops.

Figure 2. The chain of 3 loops.
How many g_{3}^{1} 's are there? The answer may or may not be finite and may depend on the edge length.

Let Γ be a chain of g loops. Fix integers d and r, denote $h=g-d+r$, and let

$$
\rho(g, r, d)=g-(r+1) h .
$$

Generic edge length, $\rho=0$. By generic we mean that the ratio between the upper and lower arc of each loop is an irrational number. Consider a Young tableaux with $r+1$ columns and h rows, filled with integers $1, \ldots, g$ (confirm that since $\rho=0$, the number of boxes equals g). Define a divisor D_{λ} as follows. Let $i \in\{1, \ldots, g\}$. If it appears on the rightmost column of λ, then the i-th loop will not contain a chip. Otherwise, let c_{i} be the column number that contains i (counted from the left), d_{i} the row number (counted from the top), and e_{i} the number indices smaller than i on the rightmost column. Now, place a chip on the i-th loop at distance $\left(r-c_{i}+d_{i}-e_{i}\right) \cdot m_{i}$ counter clockwise from the rightmost vertex of the loop. Place the remaining chips (confirm that there are precisely r of them when $\rho=0$) at the leftmost vertex.
(1) Find the divisors associated with the following tableaux:

1	2
3	4

1	4	7
2	5	8
3	6	9

$$
\begin{array}{|l|l|l|l|}
\hline 1 & 2 & \cdots & \mathrm{~g} \\
\hline
\end{array}
$$

(Hint: you don't actually need to follow the construction for the last case).
(2) Show that for each $k=0, \ldots, r$, the divisor D_{λ} has a representative with $r-k$ chips at w_{0} and k chips at v_{g+1}.
(3) Prove that D_{λ} as constructed above has degree d and rank exactly r.
(4) Prove that different tableaux yield non-equivalent divisors.
(5) Show that every g_{d}^{r} corresponds to a tableaux as above. Hint: consider the w_{0} reduced divisor, and start passing chips from left to right.
(6) Given a tableaux λ, which tableaux corresponds to the divisor $K-D_{\lambda}$?
(7) Show that there are exactly

$$
g!\prod_{i=0}^{r} \frac{i!}{(h+i)!}
$$

divisor classes of degree d and rank r.
(8) Show that when $\rho<0$ there are no divisors of degree d and rank r.

Generic edge length, $\rho>0$. In this case, the genus is strictly larger than the number of boxes. Construct a divisor D_{λ} by placing chips on loops as before when an index appears in the tableaux, and a chip at an arbitrary position on a loop corresponding to an index that does not appear in the tableaux.
(1) Check that the number of chips placed at w_{0} is still r.
(2) Show that D_{λ} has rank r.
(3) Show that the set of divisors of degree d and rank r has dimension ρ (we will not provide a precise description to the space of g_{d}^{r} 's, but there is a very natural way of doing that).

Any edge length. Let t_{i} be the torsion order of m_{i} in the group $\mathbb{Z} /\left(\ell_{i}+m_{i}\right) \mathbb{Z}$. In other words, it is the smallest integer such that $t_{i} \cdot m_{i}$ is a multiple integer of the length of the entire loop, and is 0 if such an integer doesn't exist. Consider a tableaux in which numbers are allowed to repeat, as long as the following rule is preserved: if $i=\lambda(a, b)=\lambda(c, d)$ then $a-b \equiv c-d \bmod t_{i}$, and construct a divisor D_{λ} following the recipe above.
(1) Show that a divisor constructed this way is well defined.
(2) Find edge lengths for which the following tableaux are admissible, and construct the corresponding divisors:

1	2		
2	3		
1	2	\cdots	$g-1$
2	3	\cdots	g

(3) Show that D_{λ} has rank r.

