PROBLEM SET 4 - RANK DETERMINING SETS

DHRUV AND YOAV

A subset R of a metric graph Γ is said to be rank determining if the rank of every divisor can be verified by only considering points of R. That is, a divisor D has rank r when $|D-E| \neq \emptyset$ for every effective divisor E of degree r supported on R. The goal of the exercise is the following result.

Theorem. Let Γ be a metric graph with a chosen loopless model. Then the vertices of Γ in this model form a rank determining set. In addition, if the genus of Γ is g, then Γ has a rank determining set of size $g+1$.

Let A be a closed subset of Γ. The out-degree of a point p from A, denoted outdeg ${ }_{A}(p)$ is the number of tangent directions emanating from p into the complement of A. A boundary point p of A is saturated with respect to a divisor D if $\operatorname{outdeg}_{A}(p) \leq D(p)$. Recall that a divisor D is said to be reduced with respect to a point q if it satisfies the following.

- D is effective away from q.
- Every closed, connected set $A \subseteq \Gamma \backslash\{q\}$ has a boundary point that is not saturated with respect to D.
Finally, recall that for every divisor D and a point q there exists a unique q-reduced divisor equivalent to D, denoted D_{q}. An open set is said to be a $Y L$ set if every connected component of its complement contains a boundary point of out-degree at least 2.
(1) Show that a subset A is rank-determining if and only if for every divisor D having rank -1 and any $q \in \Gamma$, there exists a point $a \in A$ such that the divisor $D+q-a$ has rank -1 .
(2) Show that a subset A of Γ is rank determining if and only if for any $q \in \Gamma$ and any acyclic orientation \mathcal{O} with a unique source at q, there is a point $a \in A$ such that $D_{\mathcal{O}}+q-a$ has rank -1 .
(3) Suppose A intersects every YL set in Γ. Show that A is rank-determining. You may wish to use the following strategy.
- Let q, \mathcal{O} be as above. Let a be in A, and let \mathcal{O}^{\prime} be the orientation obtained from \mathcal{O} by reversing a directed path from q to a. Show that \mathcal{O}^{\prime} contains a directed cycle, and hence there are at least two directed paths in \mathcal{O} from q to a.
- Let U be the set of points in Γ (including q itself) that can be reached from q by precisely one directed path in \mathcal{O}. Show that U is connected.
- Let X be a connected component of the complement of U. Since \mathcal{O} restricted to X is still acyclic, it has a source v. Show that $\operatorname{outdeg}_{X}(v)$ is at least 2 .

Conclude from this that U is a YL set disjoint from A. Therefore if A intersects every YL set, it must be rank-determining.
(4) Conclude the statement of the theorem and exhibit the necessity of the "loopless" condition. More precisely, exhibit a graph with model containing loops, such that the vertices of valence at least 3 do not form a rank determining set.
(5) Let T be a spanning tree for a graph Γ of genus g. Choose points p_{1}, \ldots, p_{g} in the interior of every edge of $\Gamma \backslash T$, and a point p_{0} of T. Show that $\left\{p_{0}, \ldots, p_{g}\right\}$ is a rank determining set ${ }^{1}$.

Riemann-Roch for metric graphs.

(1) Sketch a proof of the Riemann-Roch theorem for metric graphs by pointing out the required modifications in the proof for finite graphs.
(2) Let G be a finite graph, and let Γ be the graph obtained by giving each edge length 1 . Show that for every divisor D, we have $r_{G}(D)=r_{\Gamma}(D)$.
(3) Conclude that Riemann-Roch for finite graphs can be deduced directly from Riemann-Roch for metric graphs.

