PROBLEM SET 5 - VALUATION THEORY AND BERKOVICH CURVES

DHRUV AND YOAV

Let K be a field and $(\Gamma,+, \geq)$ a totally ordered abelian group. A valuation on K is a map

$$
\nu: K^{\times} \rightarrow \Gamma,
$$

such that

- $\nu(a b)=\nu(a)+\nu(b)$.
- $\nu(a+b) \geq \min \{\nu(a), \nu(b)\}$.

By convention, we set $\nu(0)=\infty$ and extend the order on Γ to $\Gamma \cup\{\infty\}$ by setting $\infty \geq \gamma$ for all $\gamma \in \Gamma$.

- The valuation ring associated to ν is the set of elements in K having nonnegative valuation.
- Alternatively, a subring $B \subset K$ is said to be a valuation ring if for every $x \in K^{\times}$ at least one of the set $\left\{x, x^{-1}\right\}$ lies in B.

Reminders on Valuations and Valuation Rings.

(1) Let K be a field and $\nu: K^{\times} \rightarrow \Gamma_{1}$ and $\mu: K^{\times} \rightarrow \Gamma_{2}$ be valuations. Define a relation $\nu \sim \mu$ if there is an order-preserving isomorphism of groups $\Phi: \Gamma_{1} \rightarrow \Gamma_{2}$ such that for all $z \in K^{\times}$

$$
\mu(z)=\Phi(\nu(z)) .
$$

Observe that this is an equivalence relation.
(2) Prove that the valuations on a field K up to the equivalence above are in natural bijection with the valuation subrings of K.
(3) Show that the only valuation on a finite field is trivial.
(4) Let B be a valuation ring. Prove that B is local with maximal ideal

$$
\mathfrak{m}_{B}=\{z \in B: \nu(z)>0\} .
$$

(5) Prove that B is integrally closed.
(6) Show that B is noetherian if and only if $\nu\left(K^{\times}\right)$is isomorphic to \mathbb{Z} or $\{0\}$. Deduce that an algebraically closed nontrivially valued field must have non-Noetherian valuation ring.

Field Extensions. Henceforth, assume that Γ has real rank 1, i.e. it is a subgroup of \mathbb{R} with the induced order. Let $|\cdot|$ be the absolute value on K induced by ν. Namely, choose $\alpha \in \mathbb{R}$ with $1<\alpha$ and set

$$
|z|=\alpha^{-\nu(z)} \in \mathbb{R}_{\geq 0}
$$

We say that the valued field K is complete with respect to ν if the metric space $(K,|\cdot|)$ is complete.

A non-archimedean field is a field that is complete with respect to a real rank 1 valuation. We will denote the residue field B / \mathfrak{m}_{B} by \widetilde{K}.
(1) Show that $\overline{\mathbb{Q}_{p}}$ (the algebraic closure of the p-adics) and the field Puiseux series are not complete.
(2) Suppose L is a finite extension of a complete discretely valued field K. Prove that the valuation extends uniquely to L. Deduce that valuation on K extends uniquely to the algebraic closure.

Remark: Note that the discreteness hypothesis is not necessary, but substantially simplifies the proof. Given a field, complete with respect to a real rank-1 valuation, the valuation extends uniquely to algebraic extensions. For higher rank valuations, one requires a Henselian hypothesis on the valuation ring of the field. Complete rank-1 valuation rings are automatically Henselian. See VI $\S 8$ of "Algèbre commutative" by Bourbaki.
(3) Give an example of a valued field K and two distinct valuations on $K(t)$ restricting to the given valuation on K.
(4) Let L / K be a finite extension of non-archimedean fields. Let e be the index of the subgroup $\nu\left(K^{\times}\right)$in $\nu\left(L^{\times}\right)$. Let f be the degree of the extension of residue fields $\widetilde{L} / \widetilde{K}$. Prove that

$$
e f \leq[L: K] \text {. }
$$

You may want to use the following strategy:

- Choose coset representatives for the quotient $\nu\left(L^{\times}\right) / \nu\left(K^{\times}\right)$and lifts x_{1}, \ldots, x_{e} of these elements to L^{\times}.
- Choose f elements y_{1}, \ldots, y_{f} of the valuation ring of L whose reductions are linearly independent over \widetilde{K}.
- We wish to prove that the elements $x_{i} y_{j}$ are linearly independent over K. Assume there is a relation

$$
\sum a_{i j} x_{i} y_{j}=0
$$

and consider the monomial term, indexed by say $\left(i_{0}, j_{0}\right)$, of minimal valuation. Consider another monomial term $\left(i_{1}, j_{1}\right)$ of minimal valuation and inspect the index i_{1}. How does it relate to i_{0} ?

- Deduce a linear dependence between the y_{j} 's.
(5) (Abhyankar's Inequality) Suppose L / K is a finitely generated extension of non-archimedean fields. Let s be the rank of the \mathbb{Q}-vector space

$$
\left[\nu\left(L^{\times}\right) / \nu\left(K^{\times}\right)\right] \otimes_{\mathbb{Z}} \mathbb{Q}
$$

and let t be the transcendence degree of the extension of residue field $\widetilde{L} / \widetilde{K}$. Show that $s+t \leq \operatorname{tr} . \operatorname{deg}(L / K)$.

You will find a similar strategy as the previous question will work in the transcendental case. Rather than choosing coset representatives, choose basis elements in $\left[\nu\left(L^{\times}\right) / \nu\left(K^{\times}\right)\right] \otimes_{\mathbb{Z}} \mathbb{Q}$ and lift them to L^{\times}. Similarly, choose algebraically independent elements in L over K. Given a polynomial relation between these terms, inspect the monomial terms of minimal valuation and use the argument above.

Points on Berkovich Curves. Let A be a K-algebra of finite type and $X=\operatorname{Spec}(A)$ the associated affine scheme. The Berkovich analytification of X is the set of ring valuations

$$
X^{a n}=\left\{\operatorname{val}: A \rightarrow \mathbb{R} \sqcup\{\infty\}:\left.\operatorname{val}\right|_{K}=\nu\right\}
$$

Recall that ring valuations are defined just as valuations on fields, with the exception that nonzero elements can take the value ∞.
(1) Prove that the set of closed points of X embeds naturally into $X^{a n}$.
(2) Given a point $x=\operatorname{val}_{x}$ in $X^{a n}$, prove that $\mathfrak{p}_{x}=\operatorname{val}^{-1}(\infty)$ is a prime ideal in A.

Given $x \in X^{a n}$ define the analytic residue field $H(x)$ as the completion with respect to val_{x} of the fraction field of A / \mathfrak{p}_{x}. The double residue field at x is the residue field of $H(x)$. We define $s(x)$ and $t(x)$ to be the parameters in Abhynakar's inequality with respect to the extension $H(x) / K$. From now on let $A=K[t]$ and $X^{a n}=\mathbb{A}_{a n}^{1}$.
(3) Let x be a point corresponding to a disk of radius 0 ("Type I"). Show that $s=t=0$.
(4) Let x be a point corresponding to a disk of k-rational radius ("Type II"). Show that $\nu(H(x))^{\times}=\nu\left(K^{\times}\right)$, and that the double residue field equals $k((t))$, where k is the residue field of K. Conclude that $s(x)=0$ and $t(x)=1$.
(5) Let x be a point corresponding to a disk of non k-rational radius ("Type III"). Show that $\nu\left(H(X)^{\times}\right)$properly contains $\nu\left(K^{\times}\right)$. Let $f=g / h$ be a rational function on the line with $\operatorname{val}_{x}(f)=0$. Show that the valuation of f is determined by a single monomial in each of the polynomials g, h and consequently, the reduction of f is in k. Conclude that $s(x)=1$ and $t(x)=0$.
(6) Show that for any other point of $\mathbb{A}_{a n}^{1}, s(x)=t(x)=0$ ("Type IV").

