PROBLEM SET 5 - VALUATION THEORY AND BERKOVICH CURVES

DHRUV AND YOAV

Let K be a field and $(\Gamma, +, \geq)$ a totally ordered abelian group. A valuation on K is a map

$$\nu: K^{\times} \to \Gamma$$

such that

- $\nu(ab) = \nu(a) + \nu(b).$
- $\nu(a+b) \ge \min\{\nu(a), \nu(b)\}.$

By convention, we set $\nu(0) = \infty$ and extend the order on Γ to $\Gamma \cup \{\infty\}$ by setting $\infty \ge \gamma$ for all $\gamma \in \Gamma$.

• The valuation ring associated to ν is the set of elements in K having nonnegative valuation.

• Alternatively, a subring $B \subset K$ is said to be a valuation ring if for every $x \in K^{\times}$ at least one of the set $\{x, x^{-1}\}$ lies in B.

Reminders on Valuations and Valuation Rings.

(1) Let K be a field and $\nu : K^{\times} \to \Gamma_1$ and $\mu : K^{\times} \to \Gamma_2$ be valuations. Define a relation $\nu \sim \mu$ if there is an order-preserving isomorphism of groups $\Phi : \Gamma_1 \to \Gamma_2$ such that for all $z \in K^{\times}$

$$\mu(z) = \Phi(\nu(z)).$$

Observe that this is an equivalence relation.

- (2) Prove that the valuations on a field K up to the equivalence above are in natural bijection with the valuation subrings of K.
- (3) Show that the only valuation on a finite field is trivial.
- (4) Let B be a valuation ring. Prove that B is local with maximal ideal

$$\mathfrak{m}_B = \{ z \in B : \nu(z) > 0 \}.$$

(5) Prove that B is integrally closed.

(6) Show that B is noetherian if and only if $\nu(K^{\times})$ is isomorphic to \mathbb{Z} or $\{0\}$. Deduce that an algebraically closed nontrivially valued field must have non-Noetherian valuation ring.

Date: July 29, 2016.

Field Extensions. Henceforth, assume that Γ has real rank 1, i.e. it is a subgroup of \mathbb{R} with the induced order. Let $|\cdot|$ be the absolute value on K induced by ν . Namely, choose $\alpha \in \mathbb{R}$ with $1 < \alpha$ and set

$$|z| = \alpha^{-\nu(z)} \in \mathbb{R}_{>0}.$$

We say that the valued field K is *complete* with respect to ν if the metric space $(K, |\cdot|)$ is complete.

A non-archimedean field is a field that is complete with respect to a real rank 1 valuation. We will denote the residue field B/\mathfrak{m}_B by \widetilde{K} .

- (1) Show that $\overline{\mathbb{Q}_p}$ (the algebraic closure of the p-adics) and the field Puiseux series are not complete.
- (2) Suppose L is a finite extension of a complete discretely valued field K. Prove that the valuation extends uniquely to L. Deduce that valuation on K extends uniquely to the algebraic closure.

Remark: Note that the discreteness hypothesis is not necessary, but substantially simplifies the proof. Given a field, complete with respect to a real rank-1 valuation, the valuation extends uniquely to algebraic extensions. For higher rank valuations, one requires a Henselian hypothesis on the valuation ring of the field. Complete rank-1 valuation rings are automatically Henselian. See VI §8 of "Algèbre commutative" by Bourbaki.

- (3) Give an example of a valued field K and two distinct valuations on K(t) restricting to the given valuation on K.
- (4) Let L/K be a finite extension of non-archimedean fields. Let e be the index of the subgroup ν(K[×]) in ν(L[×]). Let f be the degree of the extension of residue fields L̃/K̃. Prove that

$$ef \le [L:K].$$

You may want to use the following strategy:

- Choose coset representatives for the quotient $\nu(L^{\times})/\nu(K^{\times})$ and lifts x_1, \ldots, x_e of these elements to L^{\times} .
- Choose f elements y_1, \ldots, y_f of the valuation ring of L whose reductions are linearly independent over \widetilde{K} .
- We wish to prove that the elements $x_i y_j$ are linearly independent over K. Assume there is a relation

$$\sum a_{ij} x_i y_j = 0,$$

and consider the monomial term, indexed by say (i_0, j_0) , of minimal valuation. Consider another monomial term (i_1, j_1) of minimal valuation and inspect the index i_1 . How does it relate to i_0 ?

• Deduce a linear dependence between the y_i 's.

(5) (Abhyankar's Inequality) Suppose L/K is a finitely generated extension of non-archimedean fields. Let s be the rank of the Q-vector space

$$[\nu(L^{\times})/\nu(K^{\times})] \otimes_{\mathbb{Z}} \mathbb{Q},$$

and let t be the transcendence degree of the extension of residue field L/\tilde{K} . Show that $s + t \leq \text{tr.deg}(L/K)$.

You will find a similar strategy as the previous question will work in the transcendental case. Rather than choosing coset representatives, choose basis elements in $[\nu(L^{\times})/\nu(K^{\times})] \otimes_{\mathbb{Z}} \mathbb{Q}$ and lift them to L^{\times} . Similarly, choose algebraically independent elements in L over K. Given a polynomial relation between these terms, inspect the monomial terms of minimal valuation and use the argument above.

Points on Berkovich Curves. Let A be a K-algebra of finite type and X = Spec(A) the associated affine scheme. The *Berkovich analytification* of X is the set of *ring valuations*

$$X^{an} = \{ \operatorname{val} : A \to \mathbb{R} \sqcup \{ \infty \} : \operatorname{val}|_K = \nu \}.$$

Recall that ring valuations are defined just as valuations on fields, with the exception that nonzero elements can take the value ∞ .

- (1) Prove that the set of closed points of X embeds naturally into X^{an} .
- (2) Given a point $x = \operatorname{val}_x$ in X^{an} , prove that $\mathfrak{p}_x = \operatorname{val}^{-1}(\infty)$ is a prime ideal in A.

Given $x \in X^{an}$ define the analytic residue field H(x) as the completion with respect to val_x of the fraction field of A/\mathfrak{p}_x . The double residue field at x is the residue field of H(x). We define s(x) and t(x) to be the parameters in Abhynakar's inequality with respect to the extension H(x)/K. From now on let A = K[t] and $X^{an} = \mathbb{A}^1_{an}$.

- (3) Let x be a point corresponding to a disk of radius 0 ("Type I"). Show that s = t = 0.
- (4) Let x be a point corresponding to a disk of k-rational radius ("Type II"). Show that $\nu(H(x))^{\times} = \nu(K^{\times})$, and that the double residue field equals k((t)), where k is the residue field of K. Conclude that s(x) = 0 and t(x) = 1.
- (5) Let x be a point corresponding to a disk of non k-rational radius ("Type III"). Show that $\nu(H(X)^{\times})$ properly contains $\nu(K^{\times})$. Let f = g/h be a rational function on the line with $\operatorname{val}_x(f) = 0$. Show that the valuation of f is determined by a single monomial in each of the polynomials g, h and consequently, the reduction of f is in k. Conclude that s(x) = 1 and t(x) = 0.
- (6) Show that for any other point of \mathbb{A}^1_{an} , s(x) = t(x) = 0 ("Type IV").