PROBLEM SET 6 - LINEAR SYSTEMS ON METRIC GRAPHS

DHRUV AND YOAV

In what follows, we discuss the polyhedral structure on the linear system of a divisor on a graph. We work in the metric setting and let Γ be a metric graph with real valued edge lengths. Denote by $(\mathbb{R}, \oplus, \odot)$ the min-plus semiring on the set \mathbb{R}.

Let D be a divisor on Γ. Define the set

$$
R(D)=\{f: D+(f) \text { is effective }\}
$$

Here, f is a piecewise linear function on Γ and (f) is the associated principal divisor. We view this set as a subset of the set of real valued functions on Γ.
(1) Prove that $R(D)$ is closed under tropical addition and the addition of globally constant functions. In other words, prove that $R(D)$ is a tropical semimodule.

An element $f \in R(D)$ is said to be extremal for D or simply extremal, if for any $g, g^{\prime} \in R(D)$ such that $g \oplus g^{\prime}=f$, then either $f=g$ or $f=g^{\prime}$.
(2) Prove that f is extremal if there exist no two proper subgraphs of Γ, whose union is Γ, such that each subgraph can be fired on the divisor $D+(f)$ and the result be effective.

A cut set is a collection of points on Γ whose deletion leaves Γ disconnected. Smooth cut sets are those consisting only of divalent vertices.
(3) Let f be extremal. Prove that the support of $D+(f)$ does not contain a smooth cut set.
(4) Prove that the slopes of functions $f \in R(D)$ are bounded by a constant depending only on D. Deduce that the possible values of such f on the vertices of Γ is finite up to additive scaling.
(5) Using the above exercise, show that the set S, of functions in $R(D)$ such that the support of $D+(f)$ contains no smooth cut set, is a finite set.
(6) Prove that S generates $R(D)$ as a tropical semimodule.

Let 1 denote the constant function on Γ, equal to 1 at every point. Observe that there is a natural bijection between the sets $R(D) / \mathbf{1}$ and the set

$$
|D|=\{D+(f): f \in R(D)\}
$$

We will use this identification implicitly throughout the remainder of this worksheet.
(7) Let Γ be a graph with a chosen finite graph model. Convince yourself that $S_{y m}{ }^{d}(\Gamma)$ admits a polytopal cell decomposition. How does this decomposition vary when varying the model on Γ.

Identify each open edge with an interval $(0, \ell(e))$, where $\ell(e)$ is the length of e. Note that this orients the graph. Convince yourself that $S y m^{k}(e)$ is naturally identified with an open simplex in \mathbb{R}^{k}.
(8) A cell of $|D|$ is indexed by the following data:

- An integer d_{v} for each vertex $v \in \Gamma$.
- An integer d_{e} and an ordered decomposition $d_{e}^{(1)}+\cdots+d_{e}^{\left(r_{e}\right)}$ for each edge e.
- An integer m_{e} for each edge of Γ.

A divisor D^{\prime} belongs to such a cell if

- For each vertex $v, D^{\prime}(v)=d_{v}$.
- Upon restriction to e, D^{\prime} is given by $\sum_{i} d_{e}^{i} x_{i}$, where $0<x_{1}<\cdots<x_{r_{e}}<$ $\ell(e)$.
- The slope of f on the beginning of e is m_{e}, where f is the function such that $D^{\prime}=D+(f)$.
If $D^{\prime} \sim D$, prove that $|D|$ and $\left|D^{\prime}\right|$ are canonically identified as cell complexes.
(9) Compute the cell structure of any divisor D on a tree, and for the divisor $D=3 p$ for a point p on a circle Γ.
(10) For a divisor D^{\prime} in $|D|$, let $I_{D^{\prime}}$ be the set of points of the support of D in the interior of edges. Show that the dimension of the cell of $|D|$ containing D in its interior equals one less than the number of connected components of $\Gamma \backslash I_{D}$.
(11) Let V be the set of zero cells of $|D|$ and $S(V)$ the set of functions in $R(D)$ such that $D+(f)$ lies in V. Show that any element of S, as defined in Exercise (5), is a cell in $|D|$ of dimension 0 . Deduce that $S(V)$ contains S and hence generates $R(D)$.
(12) Show that every closed cell in $|D|$ is closed under tropical addition.
(13) Show that every closed cell in $|D|$ is generated by its vertices.
(14) Compute the cell structure of the canonical divisor on the dumbbell graph.

