PROBLEM SET 6 - LINEAR SYSTEMS ON METRIC GRAPHS

DHRUV AND YOAV

In what follows, we discuss the polyhedral structure on the linear system of a divisor
on a graph. We work in the metric setting and let I' be a metric graph with real valued
edge lengths. Denote by (R, ®,®) the min-plus semiring on the set R.

Let D be a divisor on I'. Define the set
R(D) ={f: D+ (f) is effective}.

Here, f is a piecewise linear function on I" and (f) is the associated principal divisor.
We view this set as a subset of the set of real valued functions on I'.

(1) Prove that R(D) is closed under tropical addition and the addition of globally
constant functions. In other words, prove that R(D) is a tropical semimodule.

An element f € R(D) is said to be extremal for D or simply extremal, if for
any g,¢' € R(D) such that g ® ¢’ = f, then either f =g or f =4

(2) Prove that f is extremal if there exist no two proper subgraphs of I', whose union
is I', such that each subgraph can be fired on the divisor D + (f) and the result
be effective.

A cut set is a collection of points on I' whose deletion leaves I' disconnected.
Smooth cut sets are those consisting only of divalent vertices.

(3) Let f be extremal. Prove that the support of D+ (f) does not contain a smooth
cut set.

(4) Prove that the slopes of functions f € R(D) are bounded by a constant depending
only on D. Deduce that the possible values of such f on the vertices of I is finite
up to additive scaling.

(5) Using the above exercise, show that the set S, of functions in R(D) such that
the support of D + (f) contains no smooth cut set, is a finite set.

(6) Prove that S generates R(D) as a tropical semimodule.

Let 1 denote the constant function on I', equal to 1 at every point. Observe
that there is a natural bijection between the sets R(D)/1 and the set

D ={D+(f): f € R(D)}.

We will use this identification implicitly throughout the remainder of this work-
sheet.
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(7) Let I' be a graph with a chosen finite graph model. Convince yourself that
Symd(F) admits a polytopal cell decomposition. How does this decomposition
vary when varying the model on T'.

Identify each open edge with an interval (0,¢(e)), where £(e) is the length of
e. Note that this orients the graph. Convince yourself that Sym”(e) is naturally
identified with an open simplex in R*.

(8) A cell of |D| is indexed by the following data:
e An integer d, for each vertex v € I.
e An integer d. and an ordered decomposition dgl) + -+ dé”e) for each edge
e.
e An integer m, for each edge of T

A divisor D’ belongs to such a cell if

e For each vertex v, D'(v) = d,.
e Upon restriction to e, D’ is given by Zdéxi, where 0 < 21 < -+ <z, <
(2

l(e).

e The slope of f on the beginning of e is me, where f is the function such
that D' = D + (f).

If D’ ~ D, prove that |D| and |D’| are canonically identified as cell complexes.

(9) Compute the cell structure of any divisor D on a tree, and for the divisor D = 3p
for a point p on a circle I.

(10) For a divisor D’ in |D], let Ip be the set of points of the support of D in the
interior of edges. Show that the dimension of the cell of |D| containing D in its
interior equals one less than the number of connected components of I' \ Ip.

(11) Let V be the set of zero cells of |D| and S(V') the set of functions in R(D) such
that D+ (f) lies in V. Show that any element of S, as defined in Exercise (5) , is
a cell in |D| of dimension 0. Deduce that S(V') contains S and hence generates
R(D).

(12) Show that every closed cell in |D| is closed under tropical addition.

(13) Show that every closed cell in |D| is generated by its vertices.

(14) Compute the cell structure of the canonical divisor on the dumbbell graph.



