PROBLEM SET 6 - LINEAR SYSTEMS ON METRIC GRAPHS

DHRUV AND YOAV

In what follows, we discuss the polyhedral structure on the linear system of a divisor on a graph. We work in the metric setting and let Γ be a metric graph with real valued edge lengths. Denote by $(\mathbb{R}, \oplus, \odot)$ the min-plus semiring on the set \mathbb{R} .

Let D be a divisor on Γ . Define the set

$$R(D) = \{f : D + (f) \text{ is effective}\}.$$

Here, f is a piecewise linear function on Γ and (f) is the associated principal divisor. We view this set as a subset of the set of real valued functions on Γ .

(1) Prove that R(D) is closed under tropical addition and the addition of globally constant functions. In other words, prove that R(D) is a tropical semimodule.

An element $f \in R(D)$ is said to be *extremal for* D or simply *extremal*, if for any $g, g' \in R(D)$ such that $g \oplus g' = f$, then either f = g or f = g'.

(2) Prove that f is extremal if there exist no two proper subgraphs of Γ , whose union is Γ , such that each subgraph can be fired on the divisor D + (f) and the result be effective.

A cut set is a collection of points on Γ whose deletion leaves Γ disconnected. Smooth cut sets are those consisting only of divalent vertices.

- (3) Let f be extremal. Prove that the support of D + (f) does not contain a smooth cut set.
- (4) Prove that the slopes of functions $f \in R(D)$ are bounded by a constant depending only on D. Deduce that the possible values of such f on the vertices of Γ is finite up to additive scaling.
- (5) Using the above exercise, show that the set S, of functions in R(D) such that the support of D + (f) contains no smooth cut set, is a finite set.
- (6) Prove that S generates R(D) as a tropical semimodule.

Let 1 denote the constant function on Γ , equal to 1 at every point. Observe that there is a natural bijection between the sets R(D)/1 and the set

$$|D| = \{D + (f) : f \in R(D)\}.$$

We will use this identification implicitly throughout the remainder of this worksheet.

Date: July 29, 2016.

(7) Let Γ be a graph with a chosen finite graph model. Convince yourself that $Sym^d(\Gamma)$ admits a polytopal cell decomposition. How does this decomposition vary when varying the model on Γ .

Identify each open edge with an interval $(0, \ell(e))$, where $\ell(e)$ is the length of e. Note that this orients the graph. Convince yourself that $Sym^k(e)$ is naturally identified with an open simplex in \mathbb{R}^k .

- (8) A cell of |D| is indexed by the following data:
 - An integer d_v for each vertex $v \in \Gamma$.
 - An integer d_e and an ordered decomposition $d_e^{(1)} + \cdots + d_e^{(r_e)}$ for each edge e.
 - An integer m_e for each edge of Γ .
 - A divisor D' belongs to such a cell if
 - For each vertex $v, D'(v) = d_v$.
 - Upon restriction to e, D' is given by $\sum_{i} d_e^i x_i$, where $0 < x_1 < \cdots < x_{r_e} < \ell(e)$

 $\ell(e).$

- The slope of f on the beginning of e is m_e , where f is the function such that D' = D + (f).
- If $D' \sim D$, prove that |D| and |D'| are canonically identified as cell complexes.
- (9) Compute the cell structure of any divisor D on a tree, and for the divisor D = 3p for a point p on a circle Γ .
- (10) For a divisor D' in |D|, let $I_{D'}$ be the set of points of the support of D in the interior of edges. Show that the dimension of the cell of |D| containing D in its interior equals one less than the number of connected components of $\Gamma \setminus I_D$.
- (11) Let V be the set of zero cells of |D| and S(V) the set of functions in R(D) such that D + (f) lies in V. Show that any element of S, as defined in Exercise (5), is a cell in |D| of dimension 0. Deduce that S(V) contains S and hence generates R(D).
- (12) Show that every closed cell in |D| is closed under tropical addition.
- (13) Show that every closed cell in |D| is generated by its vertices.
- (14) Compute the cell structure of the canonical divisor on the dumbbell graph.