PROBLEM SET 7 - MATRIX-TREE THEOREM

DHRUV AND YOAV

Let $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\left\{e_{1}, \ldots, e_{m}\right\}$ be the set of vertices and edges of a finite graph G. The Laplacian matrix Q of G is the $n \times n$ matrix whose (i, j)-entry is minus the number of edges between v_{i} and v_{j} for $i \neq j$, and is the valency of i when $i=j$. Given an orientation on G, the oriented adjacency matrix A is the $n \times m$ matrix whose (i, j)-entry is given by

$$
A(i, j)= \begin{cases}1 & \text { the edge } e_{j} \text { is oriented towards } v_{i} \\ -1 & \text { the edge } e_{j} \text { is oriented away from } v_{i} \\ 0 & \text { otherwise }\end{cases}
$$

(1) Show that the image of the map

$$
\begin{gathered}
\Delta: \mathbb{Z}^{|V(G)|} \rightarrow \operatorname{Div}(G) \\
\Delta(v)=Q \cdot v
\end{gathered}
$$

coincides with the set of principal divisors.
(2) Fix an orientation on G. Let Q^{\prime} be the matrix Q with the first row and column deleted, and let A^{\prime} be the matrix A with the first row deleted. Show that $Q=A A^{t}$ and $Q^{\prime}=\left(A^{\prime}\right)\left(A^{\prime}\right)^{t}$.
(3) Use the Cauchy-Binet formula to show that $\operatorname{det}\left(Q^{\prime}\right)=\sum_{S} \operatorname{det}\left(A_{S}^{\prime}\right)^{2}$, where S ranges over all subsets of $E(G)$ of size $n-1$. (Bonus: How is the Cauchy-Binet formula a generalization of the Pythagorean theorem?)
(4) Show that $\operatorname{det}\left(A_{S}^{\prime}\right)= \pm 1$ if S corresponds to a spanning tree of G, and $\operatorname{det}\left(A_{S}^{\prime}\right)=$ 0 otherwise. Conclude that $\operatorname{det}\left(Q^{\prime}\right)$ is equal to the number of spanning trees in G (this is Kirchoff's theorem).
(5) Find a bijection between the Jacobian of G and the cokernel of the map Δ^{\prime} : $\mathbb{Z}^{|V(G)-1|} \rightarrow \mathbb{Z}^{g-1}$ given by $\Delta^{\prime}(v)=Q^{\prime} \cdot v$.
(6) Use the theory of the Smith Normal Form to show that the determinant of Q^{\prime} is equal to $|\operatorname{Jac}(G)|$, and therefore $|\operatorname{Jac}(G)|$ is the number of spanning trees in G.
(7) Determine the structure of $\operatorname{Jac}\left(K_{n}\right)$. Use this to give a refinement of the classical Cayley formula that the number of spanning trees in K_{n} is n^{n-2}.
(8) We will now construct a bijection between $\operatorname{Jac}(G)$ and spanning trees of G which will, in particular, give another proof of Kirchhoff's theorem not making use of the Cauchy-Binet formula.
(a) Fix an ordering of the edges of G and a vertex q. Given a q-reduced divisor D of degree 0 , run Dhar's burning algorithm on D but with a "controlled burn": any time you have a choice for which edge to burn next, choose the one which is largest in the fixed ordering of $E(G)$. Any time a vertex is burned through (because the firefighters are overwhelmed), mark the edge
which burned through it. When the burning algorithm is complete, show that the set of marked edges is a spanning tree of G.
(b) Conversely, given a spanning tree T, run a modified version of Dhar's algorithm where you start burning from q and burn through a vertex v as soon as you use an edge in T. When this happens, set

$$
D(v)=(\# \text { of burnt neighbors of } v)-1
$$

Show that D is q-reduced and that the procedures in (a) and (b) are inverse to one another.

