
TROPICAL SCHEME THEORY

Idempotent semirings

Definition 0.1. A semiring is (R,+, ·, 0, 1) such that (R,+, 0) is a commutative
monoid (so + is a commutative associative binary operation on R and 0 is an additive
identity), (R, ·, 1) is a monoid (so · is an associative binary operation on R and 1 is
a two-sided identity for ·) satisfying
distributivity: a · (b + c) = (ab) + (ac) and (a + b)c = (ac) + (bc) and
“with zero”: 0 · a = 0 = a · 0 for all a ∈ R.

Example 0.2. The semiring of non-negative real matrices Mn×n(R≥0).

Definition 0.3. A semiring is commutative if ab = ba for all a, b ∈ R.

All semirings will be commutative unless otherwise specified.

Example 0.4. R≥0,Z≥0,Z≥0[x1, . . . , xn],Z≥0[x±1 , . . . , x
±
n ],R≥0∪{∞} (note: 0 ·∞ =

∞ · 0 = 0 to satisfy axioms), R[x].

Definition 0.5. A semiring is additively idempotent is a + a = a for all a.

Idempotent semiring will mean commutative and additively idempotent semiring
unless otherwise specified.

Note that the literature also contains extensive discussion of multiplicatively idem-
potent semirings, such as distributive lattices. These will be less relevant for our
purposes.

Example 0.6. The tropical semiring T = (R ∪ {∞},min,+,∞, 0).

~

: The additive and multiplicative identities of an idempotent semiring may not
be denoted by 0 and 1, and a semiring may contain other elements named 0 and
1. When necessary, we will specify the additive and multiplicative identities of a
semiring R by 0R and 1R, respectively. For instance, 0T =∞ and 1T = 0.

Example 0.7. The laciport1 numbers

T

=(R ∪ {−∞},max,+,−∞, 0).

Example 0.8. Let A be a commutative ring. The set R of ideals in A is an idem-
potent semiring with a + a = a, 0R = (0), and 1R = (1) = A.

Question 0.9. What properties of the ring A are reflected in the semiring of its
ideals?
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mathematician Hirune Mendebaldeko.
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Comment 0.10 (Dave). If you consider this example in the case where A is a
valuation ring with value group Γ, then you get Γ≥0 ∪ {∞}, with addition being min
and multiplication being +. In particular, for a discrete valuation ring, this gives
N ∪ {∞} with tropical structure.

Comment 0.11 (Nati). There is another idempotent semiring structure on the set of
ideals in A, with multiplication given by intersection. This reflects the (distributive)
lattice structure on the set of ideals.

Example 0.12. If R is an idempotent semiring and X is a set then RX is an idem-
potent semiring.

Definition 0.13. A topological semiring is a semiring R with a topology on R such
that +, · are continuous.

Example 0.14. The semiring of tropical numbers T carries a natural topology in
which the map − log : R≥0 → T is a homeomorphism. Then TΓ = Γ ∪ {∞} carries
the subspace topology for any subgroup Γ ⊂ R. More generally, the order topology
induces a topological semiring structure on Γ ∪ ∞ for any totally ordered abelian
group Γ.

Example 0.15. If R is a topological idempotent semiring and X is a topological
space then {f : X → R | f is continuous} is an idempotent semiring.

Example 0.16. Let Γ ⊂ R be an additive subgroup. Then CPLZ,Γ(R) ⊂ {continuousf :
R → T} is the subsemiring generated by the linear functions t 7→ at + b with a ∈ Z
and b ∈ Γ.

These functions are continuous, convex, and PL with respect to a finite decom-
position of R into closed (possibly unbounded) intervals (plus the constant function
∞). One may also consider the semiring of continuous, convex functions that are
PLZ,Γ with respect to a locally finite decomposition. Roughly speaking, functions
that are CPL with respect to finite decompositions come from tropicalizing alge-
braic functions, while locally finite decompositions arise when tropicalizing analytic
functions.

Example 0.17. The previous example generalizes to CPL functions on higher di-
mensional spaces, such as the semiring CPLZ,Γ(Rn) generated by v 7→ 〈u, v〉 + b for
u ∈ Zn and b ∈ Γ.

For ∆ the support of some polyhedral complex in Rn, we may also consider
CPLZ,Γ(∆), the semiring of such functions restricted to ∆.

Example 0.18. When we consider tropicalizing rational functions, we drop the con-
vexity requirement. This gives us PLZ,Γ(R) (or Rn, ∆) generated by {(f − g) | f, g ∈
CPLZ,Γ}.

Example 0.19. Let Y be a toric variety. Then we have Trop(Y ), which contains the
vector space NR ∼= Rn as an open and dense subset. The set of continuous functions
Trop(Y ) → T whose restriction to NR ∼= Rn is in CPLZ,Γ forms an idempotent
semiring.
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Exercise 0.20. Compute this semiring when Y = Uσ is affine. Because continuous
functions to a Hausdorff spaces are determined on dense sets, this is a subsemiring
of CPLZ,Γ(NR). Which of these CPL functions extend to Trop(Uσ)?

Example 0.21. The Boolean semiring B = {0, 1} .

Question 0.22 (Open Problem(?)). Classify the finite (commutative) idempotent
semirings.

Comment 0.23 (Kalina). The only idempotent division-semiring is B.

Definition 0.24. A semiring R is algebraically closed if for each a ∈ R and each
positive integer n, there is some b ∈ R such that bn = a.

Example 0.25. Algebraically closed semirings include T, TQ, and more generally
TΓ for Γ ⊂ R divisible. But CPLZ,Γ(R) is not, because if you divide by n ≥ 2 you
get fractional slopes.

This definition seems to be standard in the literature. Is it useful for our purposes?
One natural seeming alternative would be to require some analogue of existence of
solutions to all nonconstant polynomials.

Definition 0.26. An ideal a ⊂ R in a semiring R is a subset that is closed under
addition and under multiplication by R. That is

a + a ⊂ a

and
R · a ⊂ a.

Example 0.27. Any subset of R generates an ideal: for S ⊂ R we have (S) =
{a1s1 + · · ·+ arsr | ai ∈ R, si ∈ S}. This is the smallest ideal containing S.

Example 0.28. Any intersection of ideals is an ideal.

Example 0.29. (Corresponding to the fact that in commutative algebra, we think
of an ideal as functions vanishing on some set.) Given R,X and S ⊂ X we have that
{f : X → R | f(S) = 0R} is an ideal of RX . Similarly if X is a topological space or a
tropicalized toric variety, we get ideals in the corresponding semirings of functions.

Example 0.30. {f ∈ CPLZ(R) | f bends at x ∈ R} is an ideal. We say that “f
bends at x” if f is not linear at x. This uses convexity: If we don’t require convexity
then we get that the minimum of

x

and

x ,

both of which bend at x, does not bend at x.
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Example 0.31. {f ∈ CPL(A1
trop) | f is decreasing towards −∞}. These correspond

to functions that have a pole at ∞, i.e. polynomials of positive degree.

Neither of these last two examples is the tropicalization of an ideal of polynomials.
But Example 1.30 looks more like an ideal. That Example 1.31 is an ideal seems to
be a relic of the fact that in semirings we don’t have cancellation. Maybe we don’t
fully understand how ideals in semirings relate to ideals in rings. We are also missing
a satisfactory understanding of what the analogue of prime ideals (or irreducible
varieties in tropical scheme theory) should be.

Definition 0.32. A homomorphism of semirings f : R→ R′ is a map such that

f(a + b) = f(a) + f(b),

f(a · b) = f(a) · f(b),

f(0R) = 0R′ , and

f(1R) = 1R′ .

Example 0.33. The natural map T[x1, . . . , xn]→ CPLZ(Rn) sending T to constant
functions and xi to the ith coordinate function, is a homomorphism. Note that this
map takes monomials to affine linear functions:

cxb11 · · ·xbnn 7→ 〈(b1, . . . , bn), ·〉+ c.

It is not injective; a term may not be relevant if it never attains the minimum. This
is very important in the work of Giansiracusa-Giansiracusa which we will be studying
in the next few weeks.

~

If K is a valued field, then the natural tropicalization maps

K[x]→ T[x]

and

K[x±]→ CPLZ(R)

are not homomorphisms. This is because val(a + b) 6= min{val(a), val(b)} in general.

Example 0.34. The preimage of an ideal under a homomorphism is an ideal. This
gives another reason why the tropicalization maps are not homomorphisms, as the
inverse image of the bend ideal is not an ideal.

Proposition 0.35. Every ideal of R is contained in a maximal ideal.

The proof is the usual Zorn’s Lemma argument from commutative algebra.

References for people interested in learning more about the general theory of semir-
ings include [Go99] and [HW98]. Also, see pages 16-17 in [Go99] for many further
references regarding applications of T in other areas (especially to optimization and
theoretical CS).
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