
TROPICAL SCHEME THEORY

5. Commutative algebra over idempotent semirings II

Quotients of semirings

When we work with rings, a quotient object is specified by an ideal. When deal-
ing with semirings (and lattices), however, quotient objects are instead specified by
congruences.

Definition 5.1. A congruence on a semiring is an equivalence relation ∼ that pre-
serves the operations. That is, if r ∼ r′ and s ∼ s′ then

r + s ∼ r′ + s′

and
rs ∼ r′s′.

Example 5.2. The trivial congruence, in which r ∼ r′ if and only if r = r′.

Example 5.3 (Bourne relations—the congruence associated to an ideal). Let R be
a semiring and let I ⊂ R be an ideal. Then define a congruence ∼I by setting r ∼I r

′

if there are elements a and a′ in I such that r + a = r′ + a′.
Note that if r ∼I r

′ and s ∼I s
′ then r + s ∼I r

′ + s′ and rs ∼I r
′s′.

Lemma 5.4. If R is additively idempotent and I ⊂ R is an ideal then r ∼I r
′ if and

only if there is some b ∈ I such that r + b = r′ + b.

Proof. (⇐) This is immediate from the definition.
(⇒) Say r ∼I r

′ so there exist a, a′ ∈ I with r + a = r′ + a′. Then we have

r + a+ a′ = r′ + a′ + a′ = r′ + a′ = r + a = r + a+ a = r′ + a′ + a.

So setting b = a+ a′ we have r + b = r′ + b. �

Remark 5.5. Let R be an additively cancellative semiring. Define a new semiring
S = (R × R,+, ∗), with + being the obvious addition and multiplication given by
(a, b) ∗ (c, d) = (ac + bd, ad + bc). The set ∆ = {(a, a) | a ∈ R} is an ideal of S and
S/∆ is a ring.

Comment 5.6 (Sam). This construction seems to be introducing subtractionm i.e.
we might think of the equivalence class of (a, b) in S/∆ as corresponding to “a− b”.
As an example, if we start with R = (N,+, ∗) then the quotient S/∆ is canonically
isomorphic to Z.

Remark 5.7 (Relation to the ring case). If R is a ring and I ⊂ R is an ideal then
R/I is canonically isomorphic to R/∼I .
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Remark 5.8. If ∼ is a congruence on R then J = {x ∈ R |x ∼ 0} is an ideal of R.

Relation between ideals and congruences in additively idempotent semirings

If R is a ring then there is a natural bijection between ideals in R and congruences
on R, given by Remarks 5.7 and 5.8. We now explore the relationship between ideals
and congruences in additively idempotent semirings.

Let R be an additively idempotent semiring and let J be an ideal of R.

Proposition 5.9. The congruence ∼J is generated by {(x, 0) |x ∈ J}.

Proof. Let ≡ be the equivalence relation generated by {(x, 0) |x ∈ J}.
Suppose x ∈ J . Since R is additively idempotent, 0+x = x+x, and hence x ∼J 0.

This shows that ≡ is contained in ∼J .
We now prove that ∼J is contained in ≡. Suppose x ∼J y. By definition, this

means that there is some z ∈ J such that x + z = y + z. Then z ≡ 0 and hence
x ≡ x+ z. Since x+ z = y + z and y + z ≡ y, it follows that x ≡ y, as required. �

Definition 5.10. The saturation of the ideal J ⊂ R is

J̄ = {x ∈ R |x+ z = z for some z ∈ J}.

Equivalently, J̄ = {x ∈ R |x ∼J 0}.

Proposition 5.11. Saturation is a closure operation on ideals in R. In other words,

the saturation J̄ is an ideal, J ⊂ J̄ , J̄ = ¯̄J , and if I ⊂ J then Ī ⊂ J̄ .

Proof. That J̄ is an ideal is immediate from Remark 5.8. The containment J ⊂ J̄ is
an immediate consequence of additive idempotence. If I ⊂ J then the containment

Ī ⊂ J̄ is also obvious. It remains to show that J̄ = ¯̄J .
Suppose x ∈ ¯̄J . Then there is some z ∈ J̄ such that x + z = z. And since z ∈ J̄

there is some z′ ∈ J such that z + z′ = z′. Then

x+ z′ = x+ z + z′ = z + z′ = z′,

and hence x ∈ J̄ . �

Example 5.12. The saturation of an ideal J in the polynomial ring T[x1, ..., xn]
is the smallest monomial ideal that contains J . In other words, if J is generated
by {f1, . . . , fm} then J̄ is generated by the monomials xa1

1 · · ·xan
n that appear with

nonzero coefficient in one of the generators fi. In particular, if J contains a polynomial
with nonzero constant term then J̄ = T[x1, . . . , xn].

The analogous statement holds in B[x1, . . . , xn]. In particular, the ideal (x, x+ 1)
in B[x] considered in Lecture 2 is not saturated, and its saturation is B[x].

Definition 5.13. A congruence ∼ is cancellative if ab ∼ ac implies that either b ∼ c
or a ∼ 0.

Theorem 5.14. If J is saturated and cancellative, then J is prime.

Proof. Suppose J is saturated and cancellative, and ab ∈ J . Then a · b ∼J a · 0, so
either a ∼J 0 or b ∼J 0. Since J is saturated, this implies a ∈ J or b ∈ J . �
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Remark 5.15. The converse to Theorem 5.14 is false. For examples of prime ideals J
that are not saturated and for which ∼J is not cancellative, see [Les11, Remark 3.14].

Kernels of homomorphisms

Definition 5.16. Let ϕ : R→ S be a morphism of semirings. The kernel of ϕ is

kerϕ = {(a, b) ∈ R×R |ϕ(a) = ϕ(b)}

Similarly, if C ⊂ S × S is any congruence on S then we can consider the preimage
congruence ϕ−1(C) = {(a, b) ∈ R × R | (ϕ(a), ϕ(b)) ∈ C}. Then ker(ϕ) = ϕ−1(∆)
where ∆ ⊂ S × S is the trivial congruence. Equivalently, φ−1(C) is the kernel of the
induced map R→ S/C.

Remark 5.17 (“Ideal-theoretic kernels” versus “congruence-theoretic kernels”). The
ideal-theoretic kernel of a morphism ϕ : R → S is ϕ−1(0). Consider surjective
morphisms T[x] → T. The only such morphism that has non-trivial ideal-theoretic
kernel is the one which sends x 7→ 0T = ∞. On the other hand there are many
congruences that can be realized as kerϕ. For example, for each t ∈ T we have the
evaluation morphism ϕt : T[x] → T f(x) 7→ f(t). If we let ∼ be the intersection of
the kernels of all such ϕt, then T[x]/∼ is CPLZ(R).

Proposition 5.18. The only additively idempotent semiring with no nontrivial proper
congruences is the Boolean semiring B.

Proof. Let R be an additively idempotent semiring. Suppose R has zero-divisors, i.e.
there are x, y ∈ R\{0} such that xy = 0. Consider

C = {(a, b) |xa = xb}.

Then C is a congruence on R. It is nontrivial because (y, 0) ∈ C and proper because
(1, 0) /∈ C.

Now suppose R has no zero-divisors. Then we can define a morphism ϕ : R → B
by

ϕ(x) =

{
0B if x = 0R

1B if x 6= 0R
.

This is a morphism because, in an additively idempotent semiring, if a+ b = 0 then
both a and b are 0. Then kerϕ is a proper subset of R × R, and so either kerϕ is
nontrivial or ϕ is an isomorphism onto B. (Since B has no nontrivial automorphisms,
this isomorphism is unique.) �

Remark 5.19. Even more is true: if R is an arbitrary commutative semiring (not
necessarily additively idempotent) with no nontrivial proper congruences then either
R = B or R is a field. See [Go99, Proposition 8.11].

Remark 5.20. The Boolean semifield B does not have any nontrivial proper ideals
either. More generally, semifields do not have any nontrivial proper ideals. On the
other hand, by Proposition 5.18 we know that semifields other than B will have
nontrivial proper congruences.
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Example 5.21. The tropical semiring T has a unique nontrivial proper congruence
and the quotient of T by this congruence is B.

To see this, suppose ∼ is a nontrivial congruence on T. Then a ∼ b for two distinct
elements a and b in T, with a 6= 0T. Multiplying the relation a ∼ b by a−1, we may
assume a = 1T. If b = 0T, then ∼ is not proper (i.e. it identifies everything with 0T).

It remains to consider the case where b is nonzero and there is a nontrivial relation
1T ∼ b. Taking inverses on both sides, we also have 1T = b−1. Since inverse in T
is negation in R, we may therefore assume that b is positive in R. For any c in the
interval (0, b) we then have 1T = 1T + c ∼ b + c = c. Repeating the argument with
b replaced by bn in T (which is nb in R), for all positive integers n, we see that 1T
is identified with every positive element of R. Taking inverses then shows that 1T is
identified with every element of T r 0R, and hence T/ ∼= B, as claimed.

Goal: We want to show one of the pieces of information that congruences can
capture is a suitable notion of Krull dimension (of a semiring/algebra). We will see
later that this can also be related to the dimension of geometric objects. In order to
do this, we will define prime congruences and semifields of fractions and show that
we can “extract” the dimension from the semiring of fractions.

Semifield of fractions:

Every (multiplicatively) cancellative semiring R embeds into its semifield of frac-
tions, denoted Frac(R).

~

: If R is a ring then R is cancellative if and only if R has no zero-divisors.
This fails for semirings. While we still have that a cancellative semiring has no
zero-divisors, the converse is false. For example, T[x] has no zero divisors but
(x2 + 1)(x2 + x+ 1) = (x2 + x+ 1)2.

The elements of Frac(R) are equivalence classes in R × (R\{0}) under the equiv-
alence relation (r1, s1) ∼ (r2, s2) ⇐⇒ r1s2 = r2s1. The operations on Frac(R) are
given by

(r1, s1) + (r2, s2) = (r1s2 + r2s1, s1s2)

and

(r1, s1) · (r2, s2) = (r1r2, s1s2).

We can also “localize” by certain smaller subsets of R, that is, construct S−1R for
S ⊆ R. See [Go99, Chapter 11].

Prime congruences

Let R be a semiring, and let C ⊂ R×R be a congruence.

Definition 5.22 (Twisted product). The twisted product of α = (α1, α2) and β =
(β1, β2) in R×R is

α ∗ β = (α1β1 + α2β2, α1β2 + α2β1).



TROPICAL SCHEME THEORY 5

Congruences are always closed under twisted product. Even more is true, if C
contains α = (α1, α2) and if β = (β1, β2) is an arbitrary element of R×R, then α ∗ β
is in C.

Remark 5.23. Suppose C is the congruence induced by an ideal I in a ring. Then
I is prime if and only if α ∗ β ∈ C implies that α ∈ C or β ∈ C.

To see this, note that α is in C if and only if α1 − α2 is in I. So we are simply
saying that I is prime if and only if (α1−α2)(β1−β2) ∈ I implies either (α1−α2) ∈ I
or (β1 − β2) ∈ I.

Definition 5.24. The congruence C is prime if it is a proper subset of R × R and
α ∗ β ∈ C implies α ∈ C or β ∈ C.

Definition 5.25. The congruence C is irreducible if it has no nontrivial expression
as an intersection of congruences.

In other words, C is irreducible if whenever C is an intersection of two congruences
C1∩C2 then C = C1 or C = C2. The following results on prime ideals appear in [JM17].
See the original paper for the proofs that are omitted.

Theorem 5.26 ([JM17] Theorem 2.12). If R is additively idempotent then a congru-
ence C ⊂ R×R is prime if and only if it is cancellative and irreducible.

Recall from Definition 5.13 that if C is a cancellative congruence then R/C is a can-
cellative semiring, in other words, (a, b) ∈ C implies (a, c) ∈ C or (b, 0) ∈ C.

Remark 5.27. While the definition of prime congruence makes sense in any semiring,
the conclusion of Theorem 5.26 fails for semirings that are not additively idempotent.

An additively idempotent semiring carries a natural partial order, in which a ≤ b
if and only if a+ b = b. Semirings which are totally ordered play a special role in the
theory.

Proposition 5.28. If C is a prime congruence on an additively idempotent semiring
R then R/C is totally ordered.

Proof. Assume without loss of generality that C = ∆ and this is prime. Note that
the twisted product (a, a+ b) ∗ (b, a+ b) = (a2 + ab+ b2, a2 + ab+ b2), which is in ∆.
Therefore (a, a + b) ∈ ∆ or (b, b + a) ∈ ∆. This shows that a ≤ b or b ≤ a, so R is
totally ordered. �

Remark 5.29. Note that if R/C is totally ordered it does not mean that C is prime.
However, if R/C is also cancellative then C is prime. In other words, a congruence
C is prime if and only if the quotient R/C is cancellative and totally ordered. See
[JM17, Proposition 2.10].

Example 5.30. By the preceding remark, it is sensible to try to classify prime
congruences on a semiring but considering the possible total orderings on the quotient.
We now carry this through for the Laurent polynomial semiring over the Boolean
semifield B[x±].

Let C be a prime congruence on B[x±]. We consider the various possibilities for
the order relation between [x] and 1 in B[x±]/C.
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• If [x] = 1, then C contains the congruence generated by (x, 1). Note that
B[x±]/ 〈(x, 1)〉 = B, which has no nontrivial prime congruences. It follows
that C = 〈(x, 1)〉.

• If [x] > 1, then [xi] > [xj ] for i > j. Therefore, every Laurent polynomial will
be congruent to its monomial with highest exponent. For example, x2+x+1 ∼
x2. So we see that B[x±]/C ∼= (Z ∪ {−∞},max,+).

• If [x] < 1 then B[x±]/C ∼= (Z ∪ {∞},min,+), by a similar argument.

A computation similar to that in the preceding example shows that there are no
infinite chains of prime congruences on B[x]. Note, however, that there are infinite
chains of prime ideals in B[x] (as we saw in Lecture 2, Example 2.7), and B[x, y] has
infinite chains of (non-prime) cancellative congruences. See [JM15, Proposition 2.12].

Definition 5.31. Let R be an additively idempotent semiring. The Krull dimension
dimR is the number of strict inclusions in the longest chain of prime congruences.

Note: There may be maximal chains of prime congruences of different lengths, but
there is a unique longest chain.

Theorem 5.32 ([JM15] Theorem 3.16). Let A be any (additively idempotent) semir-
ing. Then dimA[x1, . . . , xn] = dimA+ n.

In particular:

• dimB[x] = 1
• dimB[x1, . . . , xn] = n
• dimT[x1, . . . , xn] = n+ 1

~

: This behavior is better than that of Krull dimension for arbitrary commuta-
tive rings R. If R is a ring then we only have dimR + 1 ≤ dimR[x] ≤ 2 dimR + 1.
For an example where dimR > 0 and dimR[x] = 2 dimR+ 1, see [Se54].

Definition 5.33. The ideal-theoretic kernel of a congruence C on a semiring R is
{x ∈ R | (x, 0) ∈ C}. In other words, ker C is the ideal-theoretic kernel of the quotient
map R→ R/C.

Theorem 5.34 ([JM15] Proposition 3.15). Let R be (multiplicatively) cancellative
and totally ordered. Then dimR = dim Frac(R). Moreover, the prime congruences C
of R with ker C = 0 form a chain of maximum length.

To show the above statement we need to relate the congruences of R and Frac(R).
If C is a congruence on R we denote by 〈C〉Frac(R) the congruence generated by C in

Frac(R). On the other hand, if C is a congruence on Frac(R) we can restrict C to R
and consider the congruence C|R = 〈(a, b) ∈ C | a, b ∈ R〉.

Proposition 5.35 ([JM15] Proposition 3.8 (ii)). Let R be a cancellative semiring
and let C be a congruence of R such that R/C is cancellative and C has trivial
kernel. Then 〈C〉Frac(R) |R = C. Conversely, if C is a congruence in Frac(R) then

〈C|R〉Frac(R) = C.
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This proposition gives us the dimension equality once we know that the claimed
prime congruences form a chain of maximum length.

When R is not cancellative, let P0 ⊂ P1 ⊂ · · · ⊂ Pk be a chain of maximum length.
Then consider R/P0, and look at ∆ ⊂ P ′1 ⊂ · · · ⊂ P ′k.

Question 5.36 (Daping). Is is true that dimA = dimS−1A, for some S ( A?
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