
TROPICAL SCHEME THEORY

6. Bend relations and congruences, affine tropical schemes

We begin by reviewing set-theoretic tropicalization.

Definition 6.1. A valuation on a ring R is a map v from R to an idempotent
semiring S satisfying:

(1) v(1R) = 1S, v(0R) = 0S,
(2) v(−1R) = 1S,
(3) v(ab) = v(a)v(b) ∀a, b ∈ R, and
(4) v(a) + v(b) = v(a+ b) + v(a) + v(b) ∀a, b ∈ R.

Remark 6.2. Classically, v takes values in a totally ordered semiring. Under this as-
sumption, condition (2) is redundant and condition (4) is equivalent to the statement
that v(a+ b) ≥ min{v(a), v(b)}, with equality if v(a) 6= v(b).

Example 6.3. Let R be any domain. We can define a valuation v : R → B such
that v(a) = 0B if a = 0 and v(a) = 1B if a 6= 0. We call this the trivial valuation.

Example 6.4. Let R be C[t] or CJtK. Define v : R → TZ = (Z ∪ {∞},min,+) by
v(f) = sup {n | tn divides f}. Valuations whose image is a subset of TZ are called
discrete valuations.

Example 6.5. Let R = Z, p a prime. The function vp : Z → TZ defined by
vp(a) = sup{n | pn divides a} is called the p-adic valuation.

Example 6.6. Let R be any ring, and let S be the semiring of ideals in R. The
function v : R→ S defined by v(a) = 〈a〉 is a valuation.

Question 6.7 (Sam). Does the map to the semiring of functions on the Berkovich
analytification factor through the semiring of ideals?

Definition 6.8. Let v : k → T be a valued field. The tropicalization is the map
trop : Ank → Tn sending a point (a1, . . . , an) to (v(a1), . . . , v(an)).

Question 6.9. Given f ∈ k[x1, . . . , xn], what is trop(V (f))?

Example 6.10. Let f(x) = x2 − 1. Then V (f) = {±1}, and trop(V (f)) = {0}.
Consider the image of the graph of f(x) under the tropicalization map, namely the
points (v(x), v(x2 − 1)) in R2. This is shown in Figure 1. Note that v(x2 − 1) ≥
min{2v(x), 0}, with equality if 2v(x) 6= 0. Observe that trop(V (f)) is the set of
points where min{2v(x), 0} is achieved at least twice.
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Figure 1.

The set-theoretic tropicalization of V (f(x)) in Example 6.10 is a single point. But
we would like to realize it as a point with multiplicity two, since the original variety
V (f(x)) has degree two. It is natural to ask if we can endow the image of the trop-
icalization with more algebraic or scheme-theoretic structure. Specifically, we want
to find a semiring S such that Hom(S,T) = trop(V (f)). Moreover, we want to think
of S as the coordinate ring of the tropical variety in affine n-space, so S should be a
quotient of T[x1, . . . , xn] by a congruence.

Definition 6.11. Let S be an idempotent semiring and let f ∈ S[x1, . . . , xn]. Given a
monomial m ∈ supp(f), denote by fm̂ be the polynomial obtained from f after deleting
the m-th term of f . The bend relations of f is the set of relations {f ∼ fm̂}m∈supp(f).
We write B(f) for the S-module congruence generated by the bend relations.
If J ⊂ S[x1, . . . , xn] is an ideal, we write B(J) for the S-module congruence generated
by the bend relations of all f ∈ J .

~

: Let I ⊆ k[x1, . . . , xn] be an ideal generated by some f1, . . . , fm. Then in
general B(trop(I)) 6= B(trop(f1), . . . , trop(fm)), even in the case when m = 1. This
can be seen in the following example.

Example 6.12. Consider the principal ideal I generated by f = x2 + xy + y2. We
claim that B(trop(f)) ( B(trop(I)). Indeed, observe that I contains f · (x − y) =
x3− y3 and thus trop(x3− y3) = x3 + y3 is in trop(I). Hence B(trop(I)) contains the
relations x3 ∼ x3 + y3, y3 ∼ x3 + y3 and x3 ∼ y3. But the relation x3 ∼ y3 cannot
be in B(trop(f)) since the generators of B(trop(f)) are of the form g ∼ h where g, h
have at least two monomials.

Proposition 6.13. Let S be a totally ordered idempotent semiring, and let f ∈
S[x1, . . . , xn]. An S-module homomorphism p : S[x1, . . . , xn] → S factors through
S[x1, . . . , xn]/B(f) if and only if either p(f) = 0S or the minimum of the terms of
p(f) occurs at least twice.

Proof. By definition, p factors through the quotient S[x1, . . . , xn]/B(f) if and only if
p(f) = p(fm̂) for all m ∈ supp(f). This occurs if and only if either supp(f) = ∅ (i.e.
f = 0) or no monomial is sent to something strictly smaller than all of the others. �

Definition 6.14. If S is a semiring and (M,+) is a monoid, then we denote by

S[M ] the monoid algebra S[M ] = {
∑
aix

mi |ai ∈ S,mi ∈M} with xm ·xm′
= xm+m′

.
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Example 6.15. The monoid algebra k[Nn] is the polynomial ring k[x1, . . . , xn]. A
monomial xa11 · · ·xann corresponds to x~a.

Example 6.16. The monoid algebra k[Zn] is the Laurent polynomial ring k[x±11 , . . . , x±1n ].

For any monoid algebra S[M ] and I ∈ S[M ] we can define B(I). This is useful
since monoid algebras generalize coordinate rings of affine toric varieties.

Introduction to Toric Varieties.
A toric variety over a field k is determined by a fan in Rn.

Given a cone σ ⊂ Rn, its dual is the cone

σ∨ = {~x ∈ (Rn)∨| ~x · ~y ≥ 0 for all y ∈ σ}.

The cone σ determines the affine variety Uσ = Spec k[σ∨ ∩ Zn].

If τ ⊂ σ are cones in a fan ∆, then τ∨ ⊃ σ∨, so we have an inclusion σ∨ ∩
Zn ↪→ τ∨ ∩ Zn. This inclusion of monoids defines an inclusion of monoid algebras
k[σ∨ ∩ Zn] ↪→ k[τ∨ ∩ Zn], which in turn induces an open immersion Uτ → Uσ. Thus
we can glue the affine toric varieties Uσ, by identifying Uτ with an open subvariety
of Uσ, whenever τ is a face of σ. We denote the resulting variety by X(∆). Note
that the inclusion of τ = {0} ↪→ σ, for any σ ∈ ∆ induces an inclusion of the torus
(k×)n ↪→ Uσ. The action of (k×)n on itself extends to X(∆), showing that X(∆) a
toric variety.

Example 6.17. Consider the fan ∆ . The monoid algebras correspond-
ing to each cone in this fan are

k[x±1] k[x]k[x−1]

The inclusions k[x] ↪→ k[x±1]←↩ k[x−1] of the coordinate rings of each Uσ, for σ ∈ ∆
induce the inclusions A1 ←↩ k× ↪→ A1. Now we can see that variety X(∆) associated
to the fan ∆ is P1.

Lemma 6.18. Let ϕ : M → N be a map of monoids, and f ∈ S[M ]. Then ϕ∗B(f) ⊂
B(ϕ(f)). Moreover, if ϕ is injective, then this containment is an equality.

Proof. It suffices to show that any relation of the form ϕ(f) ∼ ϕ(fm̂) is implied by the
relation ϕ(f) ∼ ϕ(f)

ϕ̂(m)
since ϕ∗B(f) is generated as an S-module congruence by
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the image of the generators of B(ϕ(f)). Let g0, . . . , gk be the terms of f corresponding
to the monomials in ϕ−1(ϕ(m)) with g0 being the term with support m. Now

ϕ(fm̂) = ϕ(f)
ϕ̂(m)

+ ϕ(g1 + . . .+ gk)

∼ ϕ(f) + ϕ(g1 + . . .+ gk)

= ϕ(f),

where the last equality holds by idempotence of addition of S.
If ϕ is injective the statement immediately follows since ϕ(fm̂) = ϕ(f)

ϕ̂(m)
. �
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