
TROPICAL SCHEME THEORY

7. Tropical schemes

In this lecture we present the construction of tropical schemes.

Definition 7.1. Let A be an idempotent semiring. The prime spectrum of A, denoted
SpecA, is the set of all prime ideals of A. We equip SpecA with the Zariski topology:
The open sets are {p ∈ SpecA | a 6⊂ p} for fixed ideals a; the closed sets are V (a) =
{p | a ⊂ p} for fixed ideals a. A base for the topology is given by D(f) = {p|f /∈ p}
for f ∈ A.

Any A-module (A-algebra) M defines a sheaf M̃ of A-modules (resp. A-algebras)
that sends D(f) 7→Mf = Af⊗M where Af is the localization of A by f . In particular,
for M = A this gives us a sheaf of semirings, which is called the structure sheaf OA.

An affine tropical scheme is a pair (X,O) such that X is a topological space and
O is a sheaf of semirings (or T-algebras) that is isomorphic to (SpecA,OA) for some
A. A tropical scheme is a pair (X,O) which is locally an affine tropical scheme.

Remark 7.2. Classically, if k is a field and a ⊆ k[x1, . . . , xn] an ideal, the zero
locus of a defines a subscheme of An

k with coordinate ring k[x1, . . . , xn]/a. However,
quotients by ideals are not well-behaved when we are working over a semiring.

The theory of open subschemes and gluing is identical for schemes and semiring
schemes. However, defining closed subschemes is more subtle in the case of semirings
schemes, in view of Remark 7.2.

We recall the definition of closed immersion for classical schemes:
A closed immersion is a morphism of schemes ϕ : Y → X such that (1)

• ϕ(Y ) ⊂ X is (topologically) a closed subspace of X,
• the induced map ϕ : Y → ϕ(Y ) is a homeomorphism, and
• ϕ# : OX → ϕ∗OY is surjective.

Equivalently, ϕ is a closed immersion (2) if

• ϕ is an affine morphism, and
• ϕ# : OX → ϕ∗OY is surjective.

Remark 7.3. If X and Y are semiring schemes (1) and (2) are no longer equivalent.
In fact, if ϕ is an affine morphism with ϕ# surjective, then ϕ(Y ) is not necessarily
topologically closed in X as shown in Example 7.4.

Example 7.4. Consider ϕ : SpecT → SpecT[x] = A1
T given by a semiring homo-

morphism ϕ# : T[x] � T sending x to some t ∈ R, i.e. t 6= 0T. Note that the
ideal-theoretic kernel of ϕ# is (ϕ#)−1(0T) = 0T[x], and it is contained in every prime
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ideal of T[x]. So the set-theoretic image of ϕ is a point which is dense in SpecT[x],
i.e. it is the generic point of A1

T.

In view of Remark 7.3 we define a closed immersion ϕ : Y → X of semiring schemes
in analogy with (2).

Definition 7.5. A morphism of tropical schemes ϕ : X → Y is a closed immersion
if it is affine and ϕ# : OX → ϕ∗OY is surjective.

A closed subscheme is an equivalence class of of closed immersions where ϕ : Y →
X and ϕ′ : Y ′ → X are equivalent if there is an isomorphism Y ∼= Y ′ commuting
with ϕ,ϕ′. We define a closed tropical subscheme in the same way.

Example 7.6. Let a A be a ring and a ⊂ A an ideal. For X = SpecA and Y =

SpecA/a the ring homomorphism A → A/a gives a closed immersion Y
ϕ−→ X. In

fact, all closed subschemes of X arise this way. Moreover, ϕ∗OY is quasi-coherent

and ϕ∗OY
∼= Ã/a.

The lack of bijective correspondence between the congruences and the ideals of a
semiring motivates the following definition:

Definition 7.7. A congruence sheaf J on X is a subsheaf (of OX-modules) of
OX × OX such that J (U) is a congruence of OX(U) for each open U ⊂ X. J
is quasi-coherent if it is quasi-coherent when we regard it as a sub-OX-module of
OX ×OX .

Proposition 7.8. Let X = SpecA be an affine tropical scheme. Then taking global
sections gives a 1-1 correspondence between congruences on A and quasi-coherent
congruence sheaves on SpecA.

Proposition 7.9. For a general tropical scheme there is a 1-1 correspondence between
closed subschemes of X and quasi-coherent congruence sheaves on X.

We now try to understand the prime ideals and congruences of T[x] as ways to
understand the points of T:

(1) For SpecT[x] = A1
T we have that

HomSch/T(SpecT,A1
T) ∼= HomT-alg(T[x],T) ∼= T.

For ϕ ∈ HomT-alg(T[x],T) with ϕ(x) = a 6= 0T, we have that the ideal-theoretic
kernel of ϕ is ϕ−1(0T) = {0T}. In order to differentiate between the points of A1

T we
can consider the congruence-theoretic kernel kerϕ = ϕ−1(∆).

(2) We now look at the prime congruences of T[x]:

• Consider the congruence-theoretic kernels of the evaluation maps T[x]
evt−→

T : x 7→ t. It is easy to see that these are prime congruences. We will
suggestively call them geometric primes. They correspond to points on T.

• There are other prime congruences P such that for every a ∈ T \{0T},
(a, 1T) ∈ T[x]/P . These correspond to primes of B[x] since T[x]/P ∼= B[x]/PB

for some prime congruence PB of B[x].
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(3) We can treat the elements of T[x] as functions rather than polynomials. To do

that, we consider T̃ = T[x]/ ∼ where f ∼ g if f(t) = g(t) for all t ∈ T. If f ∈ B[x]

the image of f in T̃ is determined by the Newton polytope of f . If we allow non-

trivial coefficients, in T̃ we remember the data of a regular subdivision of the Newton
polytope of f together with the heights of vertices in the subdivision. There are two

advantages in working with T̃.

• The semiring T̃ is cancellative.

• Every element of T̃ can be written as a product a
∏

i fi with each fi linear
and of one of the forms ft = 1T + t−1x for t ∈ T \{0T} or f0T = x. The prime

ideals of T̃ are characterized by the following proposition.

Proposition 7.10. Let K be an interval of T, not necessarily closed or open, and
let IK \ {0T} be the set of functions that have a bend on K. Then

|Spec T̃| = {IK | K ⊂ T is an interval }.

Moreover, finitely generated primes correspond to closed intervals and principal primes
correspond to points.

Proof. We first show that if K is an interval then IK = {0T}∪{functions that have a

bend in K}. If f ∈ T̃ bends at t ∈ K then ft divides f and so f ∈ IK . For the other
inclusion, since for t ∈ K, ft bends at the point t ∈ K it suffices to show that IK is

an ideal of T̃. Consider f, g ∈ IK and f, g 6= 0T̃ (the case where either one of them is
0T̃ is trivial). If f bends at t1 ∈ K and g bends at t2 ∈ K with t1 ≤ t2. Then f + g

bends on the interval [t1, t2] ⊂ K, so f + g ∈ IK . If f ∈ IK and g ∈ T̃ then gf is
either 0T̃ or bends everywhere that f does, so gf ∈ IK .

Now we show that IK = IConv(K), where Conv(K) is the convex hull of K. Clearly
IK ⊂ IConv(K). For the other inclusion, say t1, t2 ∈ K with t1 < t2 and r ∈ [t1, t2).

If t2 6= 0T then fr = ft1 + t2r
−1ft2 ∈ IK and if t2 = 0T then fr = ft1 + r−1ft2 ∈ IK .

Thus IConv(K) ⊂ IK .
To see that IK is prime, note that we have IK = IConv(K) = {0T}∪{functions that

have a bend in Conv(K)}. But if f and g don’t bend on Conv(K) then fg also does
not bend on Conv(K).

Since every f ∈ T̃\{0T̃} can be written as a
∏n

i=1 fti with a a unit, we see that

every prime ideal P ⊂ T̃ is generated by those ft which are in P . Thus for any prime
ideal P we have P = (ft | ft ∈ P ) = I{t|ft∈P}.

If P is a prime of T̃ then every element of P has to be divisible by some ft. Note
that t1r

−1ft1 + ft2 = fr for r ∈ [t1, t2]. So P = IK for some interval K. �

The above proposition may indicate that there are too many prime ideals.

We now define scheme-theoretic tropicalization.

Affine case: Let k be a valued field and let X = Spec k[x1, . . . , xn]/I. We asso-
ciate to X the tropical scheme XT = SpecT[x1, . . . , xn]/B(v(I)), called the scheme-
theoretic tropicalization of X. The set of T-points of XT is tropX the set-theoretic
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tropicalization of X, which is also equal to HomT-alg(T[x1, . . . , xn]/B(v(I)),T).

We know that dimX = dim(tropX). But we need to make sense of dimension
of tropical schemes, which we will define in terms of the Hilbert polynomial, and
then we can see that this also equals dimXT. This will also be equal to the Krull
dimension of T[x1, . . . , xn]/B(v(I)) minus one.

We recall the classical set-up. Consider the graded algebra A = k[x0, . . . , xn].
ProjA = Pn

k . A subscheme Z ⊂ Pn
k is defined by a homogeneous ideal I. The Hilbert

function of A/I is d 7→ dimk(A/I)d = dimk(A/I)∨d . The corresponding Hilbert series

is HS(t) =

∞∑
d=0

hilb(d)td. For d � 0 hilb(d) is a polynomial in d, called the Hilbert

polynomial of Z, denoted HPI .

Example 7.11. We compute the Hilbert function HS(t)

• A = k[x]. HS(t) = 1 + t + t2 + · · · = 1
1−t .

• A = k[x, y]. HS(t) = 1 + 2t + 3t2 + · · · = 1
(1−t)2 .

In order to build the corresponding theory of Hilbert functions, series, and polyno-
mials in the tropical case, we need to have a notion of the dimension of a T-module.
The following definition is proposed in [MZ08].

Definition 7.12. Let L be a T-module.

(1) A collection v1, . . . , vk ∈ L are called linearly dependent if any finite linear
combination of the vis can be written as a linear combination of a proper sub-
set of {v1, . . . , vk}. Otherwise, we say that v1, . . . , vk are linearly independent.

(2) dimT L is the largest number d such that there is a set of d linearly independent
elements of L.

Lemma 7.13. Let L be a tropical linear space of rank r, then dimT L = r.

Definition 7.14. Given a homogeneous congruence C on T[x0, . . . , xn] the Hilbert
function of C is the map d 7→ dimT(T[x0, . . . , xn]/C)∨d .

If C = B(v(I)) for an ideal I ⊂ K[x], then we can think of (T[x]/C)∨d a a tropical
linear space which is the tropicalization of (K[x]/I)d, regarding the latter as a vector
space. We provide the details in the following lecture.

Remark 7.15. Two homogeneous congruences define the same projective scheme if
they coincide in sufficiently large degree.

Definition 7.16. The saturation Csat of a homogeneous congruence is the maximal
congruence that agrees with C in sufficiently large degree.

Definition 7.17. The Hilbert function of a subscheme Z ⊂ Pn
T is the Hilbert function

of Csat for any congruence C defining Z.

Theorem 7.18. Let v : k → T be a valuation, and I ⊂ k[x0, . . . , xn] an ideal. Let
Zk be the closed subscheme of Pn

k defined by I, and let ZT be the scheme-theoretic
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tropicalization of Zk. Then hilbI = hilbB(v(I)), and so the Hilbert polynomials of Zk

and ZT are equal.

Classically the dimension of a scheme Zk with defining ideal I is the degree of the
Hilbert polynomial. The dimension of a tropical scheme is defined in the same way.
In particular, with the notation from Theorem 7.13 dimZk = dimZT = deg HPI =
deg HPB(v(I)).

Proof. First note that B(v( )) commutes with restrictions to degree d graded piece.
Then note that (T[x0, . . . , xn]/B(v(I)))d = T[x0, . . . , xn]d/B(v(Id)). The dual of
the right hands side is the tropical linear space, which is the tropicalization of
k[x0, . . . , xn]d/Id. Since the tropicalization of a subspace of dimension r has rank
r, then by Lemma 7.13 the tropical linear space has dimension r as well. �

Theorem 7.19 (Theorem 7.2.1 [Mi16]). The Krull dimension of T[x1, . . . , xn]/B(v(I))
is the Krull dimension of k[x1, . . . , xn]/I plus one.
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