TROPICAL SCHEME THEORY

8. Universal tropicalization

Classically, a valuation is a map $v: k \setminus \{0\} \to \mathbb{R}$ where k is a field. However, we can extend the notion of valuation to $v: k \to \mathbb{R} \cup \{\infty\}$, or even more generally when R a ring, we can consider $v: R \to (\mathbb{R} \cup \{\infty\}, \min, +) = \mathbb{T}$ such that

• v(ab) = v(a)v(b),

•
$$v(1) = 1_{\mathbb{T}},$$

- $v(0) = 0_{\mathbb{T}}$, and
- $v(a+b) \ge v(a) + v(b)$.

Let S be an arbitrary idempotent semiring. In particular, S is partially ordered, but not necessarily totally ordered. We can define an even more general valuation $v: R \to S$ by replacing the inequality $v(a + b) \ge v(a) + v(b)$ with the condition

$$v(a+b) + v(a) + v(b) = v(a) + v(b).$$

We also want $v(0_R) = 0_S$ and $v(\pm 1_R) = 1_S$. If we have an ordered group A, then to get back the usual notion of valuation, build S as $(A \cup \{\infty\}, +_S = \min, \cdot_S = +_A)$.

Note that if S is totally ordered then multiplicativity and v(1) = 1 already imply v(-1) = 1. To see this note that we have $v(-1)^2 = 1 = v(1)^2$. Moreover, 1 is the unique square root of 1 since if a < 1 then $a^2 \le a < 1$ and if a > 1 then $a^2 \ge a > 1$.

Lemma 8.1. Let $v : R \to S$ be a valuation. For all $a, b \in R$ we have

$$v(a+b) + v(a) + v(b) = v(a+b) + v(a).$$

Proof. Let x = a + b and y = -a. Then

$$v(b) + v(a + b) + v(a) = v(x + y) + v(x) + v(y)$$

= $v(x) + v(y) = v(a + b) + v(-a).$

We can now define the universal valuation on a fixed ring R.

Definition 8.2. Let R be a ring and let

$$S_{\text{univ}}^R := \frac{\mathbb{B}[x_a \mid a \in R]}{\left\langle \begin{array}{c} x_0 \sim 0, \ x_1 \sim x_{-1} \sim 1, \\ x_{ab} \sim x_a x_b, \ and \\ \mathcal{B}(x_a + x_b + x_{a+b}) \ for \ all \ a, b \in R \right\rangle} \right\rangle$$

where $\mathcal{B}(f)$ denotes the set of bend relations of a polynomial f. The <u>universal valuation</u> on R is the valuation $v: R \to S_{\text{univ}}^R$ given by $a \mapsto x_a$.

Date: October 12, 2017, Speaker: Noah Giansiracusa, Scribe: Netanel Friedenberg.

For the rest of the lecture, all monoids are commutative and are written multiplicatively.

Let R be a ring and A an R-algebra. We construct the monoid algebra R[A], where we think of the elements of A as formal variables and we replace the addition on A by a formal addition operation. We have an evaluation map ev : $R[A] \rightarrow A$ given by

$$\sum r_i x_{a_i} \mapsto \sum r_i a_i.$$

Proposition 8.3. Given a monoid M and an R-algebra homomorphism $f : R[M] \to A$, there exists a unique monoid homomorphism $g : M \to A$ such that

commutes.

The evaluation map $R[A] \xrightarrow{\text{ev}} A$ induces a closed embedding

(1) $\operatorname{Spec} A \hookrightarrow \operatorname{Spec} R[A].$

Thus we can think of $\operatorname{Spec} R[A]$ as an "infinite type toric variety". Thus in view of Proposition 8.3 we can regard (1) as a universal morphism for all maps from $\operatorname{Spec} A$ to toric varieties over R.

Proposition 8.4. The kernel of $ev : R[A] \rightarrow A$ is generated as a \mathbb{Z} -module by

$$(*) \begin{cases} (1) \ rx_a - x_{ra} & \text{for all } r \in R \text{ and } a \in A \\ (2) \ x_a + x_b + x_c & \text{for all } a, b, c \in A \text{ such that } a + b + c = 0. \end{cases}$$

Let R be a ring and A an R-algebra. If we have a valuation $v : R \to S$ and A is a domain we can tropicalize Spec R[A]. We denote by X the scheme-theoretic tropicalization of Spec R[A]. X is a defined as an affine tropical scheme by the set of bend relations which we will denote by $\mathcal{B}(X)$.

Proposition 8.5. The elements in (*) from a <u>strong tropical basis</u>. That is, they generate $\mathcal{B}(X)$ as a congruence.

Definition 8.6. If T is an S-algebra then a valuation val : $A \to T$ is <u>compatible</u> with $v : R \to S$ if the diagram

$$\begin{array}{c} A \xrightarrow{\text{val}} T \\ \uparrow & \uparrow \\ R \xrightarrow{\quad v} S \end{array}$$

commutes.

We have a covariant functor $S - alg \rightarrow Sets$ given by $T \mapsto \{valuations A \rightarrow T compatible with v\}.$

 $\mathbf{2}$

Theorem 8.7. Let X be the scheme-theoretic tropicalization of Spec R[A]. Then X represents the above functor, i.e. X is the moduli space of valuations on A. In particular, If R = k and $S = \mathbb{T}$ so that we are dealing with a classical (rank 1) valuation on a field, Hom(Spec \mathbb{T}, X) is the same as the underlying set of the Berkovich analytification of Spec A.

The universal property of R[A] given in Proposition 8.3 together with functoriality of scheme-theoretic tropicalization with respect to toric morphisms shows that Xmaps (scheme theoretically) to any other embedded tropicalization of Spec A. So we see that trivially, X is the limit of all tropicalizations of Spec A. We can get a finer result.

Theorem 8.8. X is isomorphic to the limit of the tropicalizations $\operatorname{Trop}(\operatorname{Spec} A \to \mathbb{A}^n_R)$ over all embeddings of $\operatorname{Spec} A$ into affine space over R.