
TROPICAL SCHEME THEORY

9. Tropical schemes, ideals of tropical (Laurent) polynomial
semirings, and valuated matroids

We will discuss the relation between the Tropical schemes, ideals of tropical (Lau-
rent) polynomial semirings, and valuated matroids.

Theorem 9.1. Let k be a field and let v : k → T be a valuation. For Y ⊂ (k×)n

a subscheme defined by an ideal I ⊂ k[x±1
1 , . . . , x±1

n ], any of the following objects
determine the others.

(1) The congruence B(trop I) = B(v(I)) on T[x±1
1 , . . . , x±1

n ],
(2) The ideal trop I = {trop f | f ∈ I}, and
(3) The set (tower) of valuated matroids of the vector space Ihd , where Ih ⊂

k[x0, . . . , xn] is the homogenization of I and Ihd is the degree d part of Ih.

Homogenization:

• The homogenization of a polynomial f =
∑
cux

u ∈ k[x1, . . . , xn] is

f̃ =
∑

cux
u · x−|u|+deg(f)

0 ,

where |u| = u1 + · · · + un and deg f = max{|u| | cu 6= 0}. For example, the

homogenization of f = x2
1x

3
2 + x3 is f̃ = x2

1x
3
2 + x3x

4
0.

• The homogenization of a tropical polynomial F =
∑
aux

u = min(au + x · u)
is

F̃ = min(au + x · u+ (deg(F )− |u|)x0).

• The homogenization of an ideal I ⊂ k[x±1
1 , . . . , x±1

n ] is

Ih = {f̃ | f ∈ I ∩ k[x±1
1 , . . . , x±1

n ]},

which is an ideal of k[x0, x1, . . . , xn].
• The homogenization of a relation F ∼ G with F,G ∈ T[x1, . . . , xn] (i.e.

supp(F ), supp(G) ⊂ Nn) with degF ≥ degG is

F̃ ∼ G̃+ (deg(F )− deg(G))x0.

• The homogenization of a congruence J ⊂ T[x]× T[x] is the congruence

Jh =
〈
F̃ ∼ G

∣∣∣(F,G) ∈ J
〉
.

Proposition 9.2. Let I ⊂ k[x±1
1 , . . . , x±1

n ] be an ideal. Then B(trop(Ih)) = (B(trop I))h.
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Before we proceed with the proof of Theorem 9.1 we recall the definition of a
tropical linear space:

Definition 9.3. Let M be a matroid on a finite set E ∼= {0, 1, . . . , n}. The tropical
linear space trop(M) is the set of vectors (w0, . . . , wn) ∈ Rn+1 such that for any
circuit C of M the minimum of the wis is attained at least twice as i ranges over C.

Proof Theorem 9.1, part 1. Here we show that (1) and (2) determine each other.
(The second part of the proof, showing that (2) and (3) determine each other, is
postponed until the discussion of valuated matroids and tropical linear spaces, below.)
It is easy to see that trop I determines B(trop I). Conversely, by Proposition 9.2
we have that B(trop I) determines B(trop Ih). We can regard any homogeneous

polynomial f ∈ Id as a linear form on A(n+d
d ) whose coordinates are indexed by

monomials of degree d in k[x1, . . . , xn]. Similarly, we can regard a tropical polynomial

F of degree d as a tropical linear form on T(n+d
d ). If Ld is the subspace of A(n+d

d )

where the linear forms lf vanish for all f ∈ Id, then

trop(Ld) = ld : =
{
z ∈ T(n+d

d )
∣∣∣ trop lf (z) attains its minimum at least twice

}
=
{
z ∈ T(n+d

d )
∣∣∣ trop lf (z) = trop lfû(z)(∀f ∈ Ihd )(∀u ∈ supp(f))

}
=
{
z ∈ T(n+d

d )
∣∣∣ ltrop f (z) = ltrop fû(z)(∀f ∈ Ihd )(∀u ∈ supp(f))

}
=
{
z ∈ T(n+d

d )
∣∣∣ lf (z) = lg(z)

(
∀(f, g) ∈ B(trop Ihd )

)}
.

It follows that B(trop Ih) determines the tower {ld}d≥0. But ld also determines its
dual linear space l⊥d = trop(L⊥d ). Note that a vector lies in L⊥d if and only if it is a
coefficient vector for a polynomial in Ihd . Thus the tropical linear space l⊥d is the same
as trop(Ihd ) (the degree d part of trop(Ih)). This implies that B(trop Ih) determines
trop Ih. Since we can recover I as Ih|x0=1, this determines trop I. �

We proceed to introduce valuated matroids and explain their connection to tropi-
cal linear spaces.

Valuated matroids and tropical linear spaces

Let E a finite set and r ∈ N. Let
(
E
r

)
denote the collection of subsets of E of size

r. A valuated matroidM on E of rank r is a function p :
(
E
r

)
→ R∪{∞}, called the

basis valuation function, such that

(1) ∃B ∈
(
E
r

)
such that p(B) 6=∞ and

(2) for any B,B′ ∈
(
E
r

)
, for all u ∈ B\B′ there exists v ∈ B′\B such that

p(B)− p(B′) ≥ p((B\{u}) ∪ {v}) + p((B′\{v}) ∪ {u}).

The support of p, defined to be supp(p) = {B ∈
(
E
r

)
| p(B) 6= ∞}, is the collection

of bases of a rank r matroid on E. We call this matroid “the underlying matroid of
M” and denote it by M.
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Denote by Md the set of all monomials of degree d. If f is a homogeneous poly-
nomial of degree d in k[x0, . . . , xn], then we can think of f as a linear form lf on the
vector space Vd with basis Md.

Let Id be the degree d part of a homogeneous ideal I ⊂ k[x0, . . . , xn]. Then
consider Ld = {y ∈ Vd | lf (y) = 0(∀f ∈ Id)} ⊂ Vd. We have a pairing 〈−,−〉 :
k[x0, . . . , xn]d × Vd → k given by 〈f, y〉 = lf (y). Then the space Ld is the annihilator
of Id.

Let dimLd =: rd. Another way to view Ld is as a point on the Grassmannian

Gr(rd, Vd) ⊂ PN , where N =
(|Md|

rd

)
− 1. The valuated matroid M(Id) of Id is the

function pd :
(
Md

rd

)
→ R∪{∞} defined by letting pd(B) be the valuation of the Plücker

coordinate of Ld indexed by B.
The (matroid-theoretic) vectors of M(Id) are tropical polynomials. Vectors of

minimal support are circuits of M(Id). For example F = min(a1 + xu1, a2 + xu2),
from which we get the vector {u1, u2} of the underlying matroid.

Proof of Theorem 9.1, part 2. We can now show that (2) and (3), i.e., trop(I) and
{M(Id)}d≥0 determine each other. As discussed above the elements of trop(I)d are
the vectors of the valuated matroid M(Id), so trop(I) determines and is determined
by the set of valuated matroids {M(Id)}d≥0. �

Theorem 9.4. Let Y ⊂ (k×)n be the subscheme defined by an ideal I ⊂ k[x±1
1 , . . . , x±1

n ].
Then the multiplicities of the maximal cells of trop(Y ) can be recovered from B(trop I).

This can be thought of as the tropical Hilbert-Chow morphism.

Multiplicities in tropical geometry
We recall the definition of multiplicities for the maximal cells of a tropical variety.

Let Y be a subvariety of (k×)n of dimension d. Let v : k× → Γ be a valuation which
admits a splitting Γ→ k×, i.e. a group homomorphism w 7→ tw such that v(tw) = w.
First recall that trop(Y ) is a polyhedral complex of pure dimension d.

For w ∈ Rn and f =
∑
cux

u the initial form of f with respect to w is

inw f =
∑

val(cu)+w·u=trop(f)(w)

t− val(cu)cuxu ∈ k̄[x1, . . . , xn],

where k̄ is the residue field. We can similarly define the initial ideal inw I = 〈inw f | f ∈ I〉.
The multiplicity of w is defined to be

mult(w) =
∑

P a minimal associated
prime of inw I

mult(P, inw I),

where mult(P, inw I) is the multiplicity of P in a primary decomposition of inw I.
After a suitable monomial change of coordinates on (k×)n, we can show that inw I

is generated by polynomials in xd+1, . . . , xn. Then mult(w) = dimk̄

(
k̄[x±1

d+1,...,x
±1
n ]

inw I∩k̄[x±1
d+1,...,x

±1
n ]

)
.

Indeed, one observes that the multiplicities do not change when we pass to k̄[x±d+1, . . . , x
±
n ]

and then the problem is reduced to computing primary decomposition of the zero ideal
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in the Artinian k̄-algebra
k̄[x±1

d+1,...,x
±1
n ]

inw I∩k̄[x±1
d+1,...,x

±1
n ]

(cf. Lemma 3.4.7 in [MS]).

To define the multiplicity of a maximal cell σ, pick w in the relative interior of σ.
Then mult(σ) = mult(w).

In order to recover the multiplicities from the bend relations, we need to extend
Gröbner theory to congruences.

Let F =
∑

u aux
u = min(au+x·u) ∈ T[x0, . . . , xn]. For w ∈ Rn+1 the we define the

initial form of F with respect to w to be inw F := minau+w·u=F (w) x·u ∈ B[x0, . . . , xn].
For G = min(bu + x · u) ∈ T[x0, . . . , xn] we consider the relation F ∼ G. The initial

form of F ∼ G is defined to be inw(F ∼ G) :=

{
(inw F ∼ inwG) if F (w) = G(w)

(0 ∼ inwG) if F (w) > G(w)
.

Definition 9.5. If C is a congruence then inw C = 〈inw(F ∼ G) |F ∼ G ∈ C〉.

Example 9.6. Let F = min(0 + x, 1 + y, 2 + z) . Fx̂ = min(1 + y, 2 + z). So
F ∼ Fx̂ is in B(F ). For w = (2, 1, 3), we have inw F = min(x, y) and inw Fx̂ = y. So
inw(F ∼ Fx̂) = min(x, y) ∼ y.

Proposition 9.7 (Tropicalization and initial forms commute).
(a) For f ∈ k[x±1

1 , . . . , x±1
n ] and w ∈ Rn, inw(trop f) = trop(inw f).

(b) For I ⊂ k[x±1
1 , . . . , x±1

n ] and w ∈ Rn, inw(B(trop I)) = B(trop(inw I)).

We first observe the effect of a change of coordinates on tropical varieties and
congruences. A monomial change of coordinates on (k×)n, xu 7→ xAu for some
A ∈ GLn(Z) corresponds to a map F (x) 7→ F (ATx) =: A · F , where F is a tropical
polynomial (cf. Lemma 3.2.7 in [MS]). For a congruence C on T[x±1

1 , . . . , x±n1 ] we
define A · C = {A · F ∼ A · G | (F ∼ G) ∈ C}. One can show that this action
commutes with tropicalization: trop(V (A · I)) = A · trop(V (I)).

Proof of Theorem 9.4. Let Y ⊂ (k×)n with defining ideal I and let

dimY = dim trop(Y ) = d.

We pick w in the relative interior of σ, where σ is a maximal cell of trop(V (I)).
Let L = span(w − w′ | w′ ∈ σ). After a change of coordinates we can assume that
L = span(e1, . . . , ed).

By Lemma 3.3.6 in [MS] it follows that we have that

L = tropV (inw I) = V (trop(inw I)).

Indeed, if Σ := trop(V (I)) = {w | inw I 6= (1)} and σ a maximal cell and w in the
relative interior of σ we have L = starΣ(w) = {v| inv(inw(I)) 6= (1)}.

We know from Proposition 9.7 that L can be recovered from B(trop(inw I)) =
inw(B(trop I)). So L can be recovered from B(trop I).

The initial ideal inw I is homogeneous with respect to the grading deg(xi) = ei for
1 ≤ i ≤ d and deg(xi) = 0 otherwise. As remarked earlier, there is a generating set
in k̄[x±1

d+1, . . . , x
±1
n ] for inw I ⊂ k̄[x±1

1 , . . . , x±1
n ].



TROPICAL SCHEME THEORY 5

Consider inw I ∩ k̄[x1, . . . , xn] and denote by inw I
h the homogenization of inw I

in k̄[x0, . . . , xn]. Recall that mult(σ) = dimk̄

k̄[x0, xd+1, . . . , xn]

inw Ih ∩ k̄[x0, xd+1, . . . , xn]
. How-

ever,
k̄[x0, xd+1, . . . , xn]

inw Ih ∩ k̄[x0, xd+1, . . . , xn]
is zero-dimensional so the Hilbert polynomial of

k̄[x0, xd+1, . . . , xn]

inw Ih
must be a constant polynomial.

Recall that the Hilbert polynomial of a homogeneous ideal J can be recovered
from B(trop J). To show that mult(w) can be recovered from B(trop I) it is enough
to show that B(trop(inw I

h)) can be recovered from B(trop I).
From Proposition 9.2 and Proposition 9.7 we know that

B(trop(inw I
h)) = B(trop(inw I))h and B(trop(inw I))h = inw(B(trop I))h.

These imply that B(trop(inw I
h)) = inw(B(trop I))h which can be recovered from

B(trop I). �
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