TROPICAL BRILL-NOETHER THEORY

3. RIEMANN-ROCH FOR GRAPHS

The main references for today's talk are the blog post of Matt Baker (2014) and the original paper of Baker and Norine (2007).

Fix a connected graph G.

Definition 3.1. The genus of G is q = |E| - |V| + 1.

If one views G as a 1-dimensional complex, then the genus is the dimension of $H_1(G)$. One can see this by contracting a spanning tree of G to a point, leaving a wedge of g loops.

Remark 3.2. The genus considered here is distinct from the familiar "topological genus" of a graph, which is defined as the least g such that G can be embedded on a closed oriented surface of genus g and hard to compute. Note, however, that if G is embedded on a closed surface of Euler characteristic χ with each face simply connected, then $g = f - \chi + 1$, where f is the number of faces in the embedding.

Definition 3.3. The canonical divisor $K \in \text{Div } G$ is $K = \sum_{v} (\text{val } v - 2)v$.

Observe that deg(K) = 2g - 2. In other words, deg(K) = 2|E| - 2|V|, which is clear because each edge contributes to the coefficients of 2 vertices, and each vertex contributes -2.

We can now state the Riemann-Roch theorem for graphs.

Theorem 3.4 (Riemann-Roch for Graphs). For every $D \in \text{Div } G$,

$$rk(D) - rk(K - D) = deg(D) - g + 1.$$

This has exactly the same form as the Riemann-Roch theorem for Riemann surfaces, but the rank and the genus have been defined differently.

Corollary 3.5.
$$rk(D) \ge deg(D) - g$$
, with equality if $deg(D) > 2g - 2$.

There are many proofs of the Riemann-Roch theorem. The proof we will present is a simplification of Baker and Norine's original proof, presented on Baker's blog.

Definition 3.6. An orientation \mathcal{O} on G is a directed graph with underlying graph G. We call \mathcal{O} an acyclic orientation if the directed graph contains no directed cycles. For any orientation \mathcal{O} , we let $D_{\mathcal{O}} = \sum_{v} (\text{indeg} v - 1)v$ be the orientation divisor corresponding to \mathcal{O} .

The dual orientation, written $\tilde{\mathcal{O}}$, is the orientation given by reversing all of the edges in \mathcal{O} .

Date: February 1, 2016, Speaker: Nikolay Malkin, Scribe: Netanel Friedenberg.

Note that $D_{\mathcal{O}} + D_{\tilde{\mathcal{O}}} = K$.

Lemma 3.7. For any acyclic orientation \mathcal{O} , The divisor class $[D_{\mathcal{O}}]$ is not effective,

Proof. Suppose $D \in [D_{\mathcal{O}}]$, and write $D = D_{\mathcal{O}} + D_f$, and let S be the set of vertices where f is maximal. Since \mathcal{O} is acyclic, we may choose v to be initial in S, so indeg v = 0.

Then D(v) < 0. Indeed, begin with $D_{\mathcal{O}}$ and perform the sequence of vertex firings corresponding to adding D_f . Then v loses at least one chip for each edge from the complement of S to v. But the number of such edges is $\mathrm{indeg}_{V \setminus S} v = \mathrm{indeg} v = D_{\mathcal{O}}(v) + 1$. So D is not effective.

Lemma 3.8. For all $D \in \text{Div } G$, either [D] is effective or there is an acyclic orientation \mathcal{O} such that $[D_{\mathcal{O}} - D]$ is effective (but not both).

Proof. Given $D \in \text{Div } G$, we may assume that D is q-reduced for some vertex q. Run Dhar's algorithm, and orient each edge in the direction it burns. Because D is q-reduced, every edge burns, so this gives an orientation \mathcal{O} on G. To see that \mathcal{O} is acyclic, note that every time a vertex burns, all of the adjacent edges burn, hence one cannot proceed via a directed path from a newly burnt to a previously burnt vertex.

For all $v \neq q$, $D(v) \leq D_{\mathcal{O}}(v)$ because otherwise the fire would not have reached v. If $D(q) \geq 0$, then D is effective. Otherwise, $D(q) \leq -1 = \operatorname{indeg}_{\mathcal{O}} q - 1 = D_{\mathcal{O}}(q)$, so $D \leq D_{\mathcal{O}}$ everywhere. So $D_{\mathcal{O}} - D$ is effective.

For $D \in \text{Div } G$, we can write $D = D^+ - D^-$ where D^+ and D^- are effective and have disjoint supports. A moment's thought reveals that this decomposition is unique. We write $\deg^+(D) = \deg(D)^+ = \sum_{v:D(v)>0} D(v)$.

Lemma 3.9. For any $D \in \text{Div } G$,

$$\operatorname{rk}(D) = \min_{\substack{D' \in [D] \\ \mathcal{O}}} \operatorname{deg}^+(D' - D_{\mathcal{O}}) - 1.$$

Proof. (\leq) Take D^{\min} , \mathcal{O} achieving this minimum. Write $D^{\min} - D_{\mathcal{O}} = E^+ - E^-$ with

$$\deg(E^+) = \deg^+(D^{\min} - D_{\mathcal{O}}) = \min_{\substack{D' \in [D] \\ \mathcal{O}}} \deg^+(D' - D_{\mathcal{O}}).$$

Rearranging, we have $[D-E^+]=[D_{\mathcal{O}}-E^-]$, which is not effective by Lemma 3.7. So

$$\operatorname{rk}(D) < \operatorname{deg}(E)^{+} = \min_{\substack{D' \in [D] \\ \mathcal{O}}} \operatorname{deg}^{+}(D' - D_{\mathcal{O}}).$$

 (\geq) Suppose to the contrary that

$$\operatorname{rk}(D) < \min_{\substack{D' \in [D] \\ \mathcal{O}}} \operatorname{deg}^+(D' - D_{\mathcal{O}}) - 1.$$

Then there exists E effective with

$$\deg(E) = \min_{\substack{D' \in [D] \\ \mathcal{O}}} \deg^+(D' - D_{\mathcal{O}}) - 1$$

and [D-E] not effective. By the Lemma 3.8, there exists \mathcal{O} such that $[D_{\mathcal{O}}-(D-E)]$ is effective, say D''-(D-E)=E' for some $D''\in[D]$ and E' effective. Rearranging this, $D''-D_{\mathcal{O}}=E-E'$, so

$$\deg^{+}(D'' - D_{\mathcal{O}}) = \deg^{+}(E - E') \le \deg^{+}(E) = \deg(E) = \min_{\substack{D' \in [D] \\ \mathcal{O}}} \deg^{+}(D' - D_{\mathcal{O}}) - 1,$$

a contradiction.
$$\Box$$

Example 3.10. On the triangle graph, the divisor

$$D = 2$$

$$1 - 2$$

has rank 0, as can easily be verified. It is equivalent to the divisor

$$D' = -1$$

There is an acyclic orientation O with

$$D_O = -1$$

which gives

$$D' - D_O = 0$$

with
$$\deg^+(D - D_O) - 1 = 0$$
.

Summarizing what we have so far, we have a way to express $\mathrm{rk}(D)$ as a minimum over orientations. The way K will come into this is that $\mathcal{O} \mapsto \tilde{\mathcal{O}}$ gives an involution on orientations with $D_{\mathcal{O}} + D_{\tilde{\mathcal{O}}} = K$.

Proof of Riemann-Roch theorem. We make two observations:

(1)
$$D_{\mathcal{O}} + D_{\tilde{\mathcal{O}}} = K$$
. So

$$\min_{\substack{D' \in [D] \\ \mathcal{O}}} \deg^+(D' - D_{\mathcal{O}}) = \min_{\substack{D' \in [D] \\ \mathcal{O}}} \deg^+(D' - (K - D_{\mathcal{O}})).$$

(2)
$$\deg^+(D) = \deg(D) + \deg^+(-D)$$
. So

$$\deg^{+}(D - D_{\mathcal{O}}) = \deg(D - D_{\mathcal{O}}) + \deg^{+}(D_{\mathcal{O}} - D) = \deg(D) + \deg^{+}(D_{\mathcal{O}} - D) - (g - 1).$$

Now we have

$$\begin{aligned} \operatorname{rk}(D) - \operatorname{rk}(K - D) &= \min_{\substack{D' \in [D] \\ \mathcal{O}}} \operatorname{deg}^{+}(D' - D_{\mathcal{O}}) - \min_{\substack{D' \in \\ \mathcal{O}}} \operatorname{deg}^{+}(K - D' - D_{\mathcal{O}}) \\ &= \min_{\substack{D' \in [D] \\ \mathcal{O}}} \operatorname{deg}^{+}(D' - D_{\mathcal{O}}) - \min_{\substack{D' \in [D] \\ \mathcal{O}}} \operatorname{deg}^{+}(D_{\mathcal{O}} - D') \\ &= \min_{\substack{D' \in [D] \\ \mathcal{O}}} (\operatorname{deg}(D') + \operatorname{deg}^{+}(D_{\mathcal{O}} - D') - (g - 1)) - \min_{\substack{D' \in [D] \\ \mathcal{O}}} \operatorname{deg}^{+}(D_{\mathcal{O}} - D') \\ &= \min_{\substack{D' \in [D] \\ \mathcal{O}}} (\operatorname{deg}(D) + \operatorname{deg}^{+}(D_{\mathcal{O}} - D') - (g - 1)) - \min_{\substack{D' \in [D] \\ \mathcal{O}}} \operatorname{deg}^{+}(D_{\mathcal{O}} - D') \\ &= \operatorname{deg}(D) - (g - 1). \end{aligned}$$

If one hypothesizes a Riemann-Roch-like theorem for graphs, then this motivates the above definition of the genus. Namely, if we guess that

$$rk(D) - rk(K - D) = deg(D) - \gamma + 1$$

for some γ depending only on G, then γ is easily found by letting $D=D_{\mathcal{O}}$ for some acyclic orientation \mathcal{O} . By Lemma 3.7, $\operatorname{rk}(D_{\mathcal{O}})-\operatorname{rk}(D_{\tilde{\mathcal{O}}})=-1-(-1)=0$, so $\deg(D)_{\mathcal{O}}-\gamma+1=0$ and $\gamma=\deg(D)_{\mathcal{O}}+1=|E|-|V|+1$.

References

[Bak14] M. Baker. Reduced divisors and Riemann-Roch for graphs. Matt Baker's Math Blog, 2014. URL:https://mattbaker.blog/2014/01/12/reduced-divisors-and-riemann-roch-for-graphs/.

[BN07] M. Baker and S. Norine. Riemann-Roch and Abel-Jacobi theory on a finite graph. Adv. Math., 215(2):766-788, 2007.